The Schrödinger equation written in the second quantization formalism: derivation from first principles
Keywords:
Quantum Mechanics. Second quantization. Canonical transformations.Abstract
Courses about Quantum Mechanics are generally developed at the level of the mathematical formalism, its syntactic level, seldom treating the interpretation of the theory, its semantic level. In the majority of cases, this first formal approach is not followed by any other course addressing the numerous interpretations of the theory. It has become apparent that this strategy leads to a deficit in the professional formation of the students, exceedingly driving them to technical areas of application of Quantum Mechanics. However, applications such as those on quantum computing and entanglement, as they become more and more encrusted in the deepest foundations of the theory, are asking more and more for the development of this kind of ability. In this paper we develop an approach to deal with second quantization in the realm of Quantum Mechanics. We show that the second quantization Schrödinger equation can be mathematically derived from a classical Hamiltonian written in the phase space $(Q,P)$, obtained by a canonical transformation upon the original phase space $(q,p)$, using an axiomatic quantization procedure developed elsewhere. We apply this quantization process to a bosonic system, modelled by the harmonic oscillator problem. We then make reverse engineering to show that Schwinger's second quantization approach to fermionic systems furnishes the path to derive a Schrödinger equation explicitly written in terms of the usual momenta and positions operators $(\hat{q},\hat{p})$ for such systems. Finally, we use these mathematical developments to address the commonly accepted statement that 'the spin has no classical analog'.
Downloads
References
S. Gasiorowicz. Quantum Physics. Wiley, 3rd edition edition, 2003.
Y. S. Kim and M. E. Noz. Phase Space Picture of Quantum Mechanics. World Scientific, New York, 1991.
J. Schwinger. On angular momentum. Harvard University, 1 1952.
L. S. F. Olavo and A. D. Figueiredo. The schrödinger eigenfunctions for the half-integral spins. Physica A: Statistical Mechanics and its Applications., 262(1):181 196, 1999.
L. S. F. Olavo. Quantum Mechanics: Principles, New Perspectives, Extensions and Interpretation. Nova Science Pub Inc, 2016.
H. Goldstein, C. P. Poole, and J. Safko. Classical Mechanics. Pearson Education, 2011.
I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey and D. Zwillinger. Table of Integrals, Series, and Products, Academic Press; 6th edition (2000).
G. Baym. Lectures On Quantum Mechanics . The Benjamin / Cummings Publishing Company, 1969.
Y. Ding and M. Xu. Oscillator Model of Spin. arXiv e-prints, arXiv:1405.4614, May 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of the Physics Teacher
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).