Práticas de promoção à criatividade científica entre estudantes adolescentes: uma revisão sistemática
DOI:
https://doi.org/10.26512/lc29202349473Palavras-chave:
Criatividade, Adolescentes, Criatividade Científica, Revisão SistemáticaResumo
O objetivo deste estudo foi analisar as práticas de promoção à criatividade científica entre estudantes adolescentes avaliadas em artigos empíricos publicados entre 2018 e 2022. A busca das pesquisas ocorreu em quatro bases de dados. Os resultados revelaram que as práticas demonstraram ser eficazes e estavam associadas com abordagem em ciência, tecnologia, engenharia e matemática; suporte tecnológico; métodos de ensino/aprendizagem e avaliação de características cognitivas e comportamentais dos alunos. Recomenda-se a realização de pesquisas em contextos nacionais, de modo a investigar as estratégias de incentivo à criatividade científica entre os estudantes adolescentes.
Downloads
Referências
Alencar, E. M. L. S., Braga, N. P., & Marinho, C. D. (2016). Como desenvolver o potencial criador: um guia para a liberação da criatividade em sala de aula. Vozes.
Araújo, L. S., Cruz, J. F. A., & Almeida, L. S. (2017). Achieving scientific excellence: An exploratory study of the role of emotional and motivational factors. High Ability Studies, 28 (2), 249–264. https://doi.org/10.1080/13598139.2016.1264293
Astutik, S., Susantini, E., Madlazim, M. N., & Supeno, S. (2020). The effectiveness of collaborative creativity learning models (CCL) on secondary school scientific creativity skills. International Journal of Instruction, 13(3), 525-538. https://doi.org/10.29333/iji.2020.13336a
Ayas, M.B., & Sak, U. (2014). Objective measure of scientific creativity: Psychometric validity of the Creative Scientific Ability Test. Thinking Skills and Creativity, 13(2), 195-205. https://doi.org/10.1016/j.tsc.2014.06.001
Azevedo, G. T., & Maltempi, M. V. (2023). Desenvolvimento de habilidades e invenções robóticas para impactos sociais no contexto de formação em Matemática. Ciência & Educação, 29 (2), 1-21. https://doi.org/10.1590/1516-731320230016
Bacich, L., & Moran, J. (2018). Metodologias Ativas para uma Educação Inovadora: Uma Abordagem Teórico-Prática. Pensa.
Barbot, B. (2018). Creativity and self-esteem in adolescence: A study of their domain specific, multivariate relationships. Journal of Creative Behavior, 54(2), 1-14. https://doi.org/10.1002/jocb.365
Beghetto, R. A., & Madison, E. (2022). Accepting the challenge: Helping schools get smarter about supporting students’ creative collaboration and communication in a changing world. Journal of Intelligence, 10(4), 1-13. https://doi.org/10.3390/jintelligence10040080
Benek, I., & Akcay, B. (2022). The effects of socio-scientific STEM activities on 21st century skills of middle school students. Participatory Educational Research, 9 (2), 25-52. https://doi.org/10.17275/per.22.27.9.2
Çalışıcı, S., & Benzer, S. (2021). The effects of STEM applications on the environmental atitudes of the 8th year students, scientific creativity and science achievements. Malasian Online Journal of Educational Sciences, 9 (1), 24-36. https://jml.um.edu.my/index.php/MOJES/article/view/28217/12738
Doğan, A., & Kahraman, E. (2021). The effect of STEM activities on the scientific creativity of middle school students. International Journal of Curriculum and Instruction, 13(2), 1241-1266. https://ijci.globets.org/index.php/IJCI/article/view/638/324
Eroglu, S., & Bektas, O. (2022). The effect of STEM applications on the scientific creativity of 9th-grade students. Journal of Education in Science, Environment and Health, 8(1), 17-36. https://doi.org/10.21891/jeseh.1059124
Feist, G. J. (2020). Science. Em S. Pritzker & M. Runco (Orgs.) Encyclopedia of Creativity (pp. 460-466). Elsevier Academic Press.
Garcés, S. (2018). Creativity in science domains: A Reflection. Atenea, 517(1), 241-253. https://www.redalyc.org/journal/328/32865412015/html/
Glăveanu, V. P., Lubart, T., Bonnardel, N., Botella, M., Biaisi, P. M., Catherine, M. D., Georgsdottir, A., Guillou, K., Kurtag, G., Mouchiroud, C., Storme, M., Wojtczuk, A., & Zenasni, F. (2013). Creativity as action: findings from five creative domains. Frontiers in Psychology, 4 (176), 1-14. https://doi.org/10.3389/fpsyg.2013.00176
Gök, B., & Sürmeli, H. (2022). The effect of scientific toy design activities based on the engineering design process on secondary school students’ scientific creativity. Asian Journal of University Education, 18(2), 692-709. https://doi.org/10.24191/ajue.v18i2.17987
Gray, S., & Morris, P. (2022). Capturing the spark: PISA, twenty-first century skills and the reconstruction of creativity. Globalisation, Societes and Education, 6 (2), 1-16. https://doi.org/10.1080/14767724.2022.2100981
Haim, K., & Aschauer, K. (2022). Fostering scientific creativity in the classroom: The Concept of Flex-Based Learning. International Journal of Learning, Teaching and Educational Research, 21 (3), 196-230. https://doi.org/10.26803/ijlter.21.3.11
Hasancebi, F. Y., Guner, O., Kutru, C., & Hasancebi, M. (2021). Impact of Stem integrated argumentation-based inquiry applications on students ' academic success, reflective thinking and creative thinking skills. Participatory Educational Research, 8 (4),274-296. https://doi.org/10.17275/per.21.90.8.4
Hebebci, M. T., & Usta, E. (2022). The Effects of integrated STEM education practices on problem solving skills, scientific creativity, and critical thinking dispositions. Participatory Educational Research, 9(6), 358-379. http://doi.org/10.17275/per.22.143.9.6
Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403. https://doi.org/10.1080/09500690110098912
Huang, C. F., & Wang, K. C. (2019). Comparative analysis of different creativity tests for the prediction of students’scientific creativity. Creativity Research Journal, 31(4), 443-447. https://doi.org/10.1080/10400419.2019.1684116
Huang, P. S., Peng, S. L., Chen, H. C., Tseng, L. C., & Hsu, L. C. (2017). The relative influences of domain knowledge and domain-general divergent thinking on scientific creativity and mathematical creativity. Thinking Skills and Creativity, 25(1), 1-9. https://doi.org/10.1016/j.tsc.2017.06.001
Idoeta, P. A. (2021, novembro 15). A surpreendente queda de criatividade em adolescentes do mundo detectada pela OCDE. BBC News Brasil. https://www.bbc.com/portuguese/geral-59099276
Karwowski, M., Dul, J., Gralewski, J., Jauk, E., Jankowska, D. M., Gajda, A., Chruszczewski, M. H., & Benedek, M. (2016). Is creativity without intelligence possible? A necessary condition analysis. Intelligence, 57 (2), 105-117. https://doi.org/10.1016/j.intell.2016.04.006
Kırıcı, M. G., & Bakırcı, H. (2021). The effect of STEM supported research-inquiry-based learning approach on the scientific creativity of 7th grade students. Journal of Pedagogical Research, 5(2), 19-35. https://doi.org/10.33902/JPR.2021067921
Kızkapan, O., & Nacaroğlu, O. (2021). An examination of relationship between gifted student’s scientific creativity and science-based entrepreneurship tendencies. Malaysian Online Journal of Educational Sciences, 9 (1), 1-13. http://hdl.handle.net/20.500.11787/3621
Klahr, D. (2002). Exploring Science – The Cognition and Development of Discovery Process. Mit Press.
Kleibeuker, S. W., Stevenson, C. E., Van Der Aar, L., Overgaauw, S., Van Duijvenvoorde, A. C., & Crone, E. A. (2017). Training in the adolescent brain: An fMRI training study on divergent thinking. Developmental Psychology, 53(2), 353-365. http://dx.doi.org/10.1037/dev0000239
Koç, A., & Büyük, U. (2021). Effect of robotics technology in science education on scientific creativity and attitude development. Journal of Turkish Science Education, 18(1), 54-72. https://files.eric.ed.gov/fulltext/EJ1303792.pdf
Lee, I., & Park, J. (2021). Student, parents and teacher perceptions on the behavioral characteristics of scientific creativity and the implications to enhances student’s scientific creativity. Journal of Baltic Science Education, 20(1), 67-79. https://doi.org/10.33225/jbse/21.20.67
Newman, F., & Scurry, J. E. (2015). Higher education and the digital rapids. International Higher Education, 26(1), 13-14. https://dx.doi.org/10.6017/ihe.2002.26.6968
Nurtanto, M., Pardjono, P., & Ramdan, S. D. (2020). The effect of STEM-EDP in professional learning on automotive engineering competence in vocational High School Journal for the Education of Gifted Young Scientists,8 (2), 633 – 649. https://doi.org/10.17478/jegys.645047
Organização das Nações Unidas (ONU). (2015). Transformando Nosso Mundo: A Agenda 2030 para o Desenvolvimento Sustentável. https://nacoesunidas.org/wp-content/uploads/2015/10/agenda2030-pt-br.pdf
Qiang, R., Han, Q., Guo, Y., Bai, J., & Karwowski, M. (2020). Critical thinking disposition and scientific creativity: The mediating role of creative self-efficacy. Journal of Creative Behavior, 54 (1), 90-99. https://doi.org/10.1002/jocb.347
Ramnarain, U. D. (2020). Exploring the autonomy of South African school science students when doing investigative inquiries for a science fair. Eurasia Journal of Mathematics, Science and Technology Education, 16(12). https://doi.org/10.29333/ejmste/9128
Redó, N. A., Gutiérrez, M. Á. M., & Cano, J. D. V. (2021). Dimensions of creativity in secondary school high-ability students. European Journal of Investigation in Health, Psychology and Education, 11 (3), 953-961. https://doi.org/10.3390/ejihpe11030070
Rosenzweing, E.Q., & Wigfield, A. (2016). STEM motivation interventions for adolescents: A promising start, but further to go. Educational Psychologist, 51(2), 146-163. https://doi.org/10.1080/00461520.2016.1154792
Septaria, K., & Rismayanti, R. (2022). The effect of scientific approach on Junior High school students’ Scientific Creativity and Cognitive Learning Outcomes. Journal of Research and Education Studies: E-Saintika, 6(3), 173–189. https://doi.org/10.36312/esaintika.v6i3.955
Sica, L. S., Ragozini, G., Di Palma, T., & Sestito, A. L. (2017). Creativity as Identity Skill? Late adolescents' management of identity, complexity and risk‐taking. Journal of Creative Behavior, 53(4), 457-471. https://doi.org/10.1002/jocb.221
Siew, N. M., & Ambo, N. (2020). The scientific creativity of fifth graders in a STEM project-based cooperative learning approach. Problems of Education in the 21st Century, 78(4), 627-643. https://doi.org/10.33225/pec/20.78.627
Stretch, E. J., & Roehrig, G. H. (2021). Framing failure: Leveraging uncertainty to launch creativity in STEM education. International Journal of Learning and Teaching 7 (2), 123-133. https://pdfs.semanticscholar.org/45cc/ed48ffd5dcda97944876b935c19f05917350.pdf
Suarte, L. B. O., Silva, K. L. F., & Seibert, C. S. (2021). O PISA como instrumento de análise das ciências no contexto da saúde ambiental, no âmbito internacional e nacional. Revista Humanidades e Inovação, 8(39), 309-321. https://revista.unitins.br/index.php/humanidadeseinovacao/article/view/4190
Sun, M., Wang, M., & Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: the impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37(1), 1871-1890. https://doi.org/10.1016/j.tsc.2020.100682
Suyidno, S., Susilowati, E., Arifuddin, M., Misbah, M., Sunarti, T. & Dwikoranto, D. (2019). Increasing students’responsibility and scientific creativity through Creative Responsibility Based Learning. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 9(2), 178–188. https://journal.unesa.ac.id/index.php/jpfa/article/view/5807
Tambunan, H. (2019). The effectiveness of the problem-solving strategy and the scientific approach to students’ mathematical capabilities in high order thinking skills. International Electronic Journal of Mathematics Education, 14 (2), 293-302. https://doi.org/10.29333/iejme/5715
Tang, C., & Kaufman, J. C. (2015). Personal characteristics that distinguish creative scientists from less creative scientists. Journal of Creative Behavior, 51(3), 204-215. https://doi.org/10.1002/jocb.99
Van der Zanden, P. J. A. C., Meijer, P. C., & Beghetto, R. A. (2020). A review study about creativity in adolescence: Where is the social context? Thinking Skills and Creativity, 20(3), 1-18. https://doi.org/10.1016/j.tsc.2020.100702
Vries, H. B., & Lubart, T. (2017). Scientific Creativity: divergent and convergent thinking and the impact of culture. Journal of Creative Behavior, 53(2), 145-155. https://doi.org/10.1002/jocb.184
Wai, J., & Brown, M. I. (2021). Developmental histories facilitating the emergence of creative scientific expertise: The role of developed cognitive talents, education, and social and cultural contexts. Frontiers in Psychology, 12(7), 1-13. https://doi.org/10.3389/fpsyg.2021.716529
Yildirim, M., Çalik, M., & Özmen, H. (2016). A Meta-synthesis of Turkish studies in science process skills. International Journal of Environmental & Science Education, 11(14), 6518-6539. https://files.eric.ed.gov/fulltext/EJ1115726.pdf
Zhu, W., Shang, S., Jiang, W., Pei, M., & Su, Y. (2019). Convergent thinking moderates the relationship between divergent thinking and scientific creativity. Creativity Research Journal, 31 (3), 320-328. https://doi.org/10.1080/10400419.2019.1641685
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Suellen Cristina Rodrigues Kotz, Asdrúbal Borges Formiga-Sobrinho

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Todas as publicações da revista Linhas Críticas serão licenciadas sob uma licença Creative Commons Atribuição 4.0 Internacional (CC BY 4.0). Isso significa que qualquer pessoa tem o direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato;
Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
As pessoas autoras não podem revogar estes direitos desde que sejam respeitados os termos da licença.
Conforme os termos:
Atribuição — as pessoas leitoras devem atribuir o devido crédito, fornecer um link para a licença, e indicar se foram feitas alterações. As pessoas leitoras podem fazê-lo de qualquer forma razoável, mas não de uma forma que sugira que o licenciante o apoia ou aprova o seu uso.
Sem restrições adicionais — as pessoas autoras não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.
Autores/as que publicam nesta revista concordam com os seguintes termos:
- Pessoas autoras mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a licença Creative Commons Atribuição 4.0 Internacional (CC BY 4.0), o que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Pessoas autoras têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Pessoas autoras têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais, repositórios préprint ou na sua página pessoal) qualquer ponto antes do envio da versão final do artigo à revista, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
