Impact of the transport system on air quality: the case of Rio de Janeiro, Brazil

Auteurs-es

  • Luciana Maria Baptista Ventura PhD in Chemistry, Chemistry Engineering, Instituto Estadual do Ambiente (Inea), Rio de Janeiro, RJ, Brazil https://orcid.org/0000-0002-2597-6830
  • Isabela Rocha Pombo Lessi de Almeida Masters in Transport Engineering, Researcher, Programa de Engenharia de Transportes (PET), Universidade Federal do Rio de Janeiro (Coppe/UFRJ), Rio de Janeiro, RJ, Brazil https://orcid.org/0000-0002-5675-4421
  • Michelle Branco Ramos Masters in Chemistry, Chemist, Instituto Estadual do Ambiente (Inea), Rio de Janeiro, RJ, Brazil
  • Marcio de Almeida D’agosto PhD in Transport Engineering, Professor, Programa de Engenharia de Transportes (PET), Universidade Federal do Rio de Janeiro (Coppe/UFRJ), Rio de Janeiro, RJ, Brazil https://orcid.org/0000-0003-4364-7480
  • Adriana Gioda PhD in Chemistry, Professor, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil https://orcid.org/0000-0002-5315-5650

DOI :

https://doi.org/10.18472/SustDeb.v13n3.2022.44993

Mots-clés :

Air quality, Urban mobility, Light-rail transit, Pollutant emissions

Résumé

In the downtown area of Rio de Janeiro, Brazil, an urban mobility plan was implemented between 2011 and 2016 due to 2014 FIFA World Cup and the 2016 Olympic Games. This study aimed to evaluate the environmental benefits achieved by this urban mobility plan by comparing two periods: 2013 (before the megaevents) and 2017 (after the megaevents). Energy consumption and emissions from buses were estimated, and regulated pollutants (O3, CO, PM10, and PM2.5) were monitored. According to the calculations, NOx was the most emitted pollutant (60%). A 25% reduction levels for all pollutants was observed in 2017 compared to 2013. The reorganization of traffic shortened the bus routes, resulting in less fuel consumption (8%) and emissions. The annual mean concentrations of air pollutants (PM10, PM2.5, and CO) also decreased, thereby improving air quality. However, the levels of O3 increased, possibly owing to the reduction of NOx levels.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Luciana Maria Baptista Ventura, PhD in Chemistry, Chemistry Engineering, Instituto Estadual do Ambiente (Inea), Rio de Janeiro, RJ, Brazil

The author did postdoctoral studies in Chemistry at PUC-Rio and in Transport Engineering at PET/COPPE/UFRJ. The author works at INEA and she has held the position of Research and Innovation Coordinator and Air Quality Manager for the past 5 years.

Isabela Rocha Pombo Lessi de Almeida, Masters in Transport Engineering, Researcher, Programa de Engenharia de Transportes (PET), Universidade Federal do Rio de Janeiro (Coppe/UFRJ), Rio de Janeiro, RJ, Brazil

Master in Transport Engineering at Universidade Federal do Rio de Janeiro. Currently, the authors works as Quality Supervisor at Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de Janeiro, RJ, Brazil

Michelle Branco Ramos, Masters in Chemistry, Chemist, Instituto Estadual do Ambiente (Inea), Rio de Janeiro, RJ, Brazil

The authors worked for 10 years in Air Quality Management at INEA. Currently, the author works as a chemist in the chemical emergencies sector at the same Institute.

Marcio de Almeida D’agosto, PhD in Transport Engineering, Professor, Programa de Engenharia de Transportes (PET), Universidade Federal do Rio de Janeiro (Coppe/UFRJ), Rio de Janeiro, RJ, Brazil

Mechanical and automobile engineer, master and doctor in transport engineering, associate professor at PET/COPPE/UFRJ, coordinator of the Cargo Transport Laboratory, researcher 1A at CNPq, President of the Brazilian Institute for Sustainable Transport and coordinator of the Green Logistics Program Brazil (PLVB).

Adriana Gioda, PhD in Chemistry, Professor, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil

Graduated in Industrial Chemistry and Master in Analytical Chemistry from the Federal University of Santa Maria (UFSM-RS) and PhD in Chemistry from the Federal University of Rio de Janeiro (LADETEC/IQ/UFRJ). For 5 years I worked at the University of Puerto Rico, USA (UPR-USA) as a Postdoc, Visiting Researcher and Professor. I have experience in the field of Atmospheric, Environmental Chemistry and Toxicology. Currently, I´m Associate Professor Level 1 at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), coordinator of the Atmospheric Chemistry Laboratory (LQA / PUC-Rio), researcher 1C (CNPq) and Scientist of Our State (FAPERJ).

Références

ALMEIDA, I. R. P. L; OLIVEIRA, C. M.; D’AGOSTO, M. A., 2017. Avaliação de desempenho ambiental da racionalização das linhas de ônibus do município do Rio de Janeiro. Rev. Transport. Públic. v. 146, p. 97-110.

ARBILLA, G. et al. Ozone air quality modeling. A case study: a heavily vehicle impacted urban avenue in Rio de Janeiro, Brazil. J. Braz. Chem. Soc. v. 13, p. 308-317, 2002. DOI: http://dx.doi.org/10.1590/S0103-50532002000300004

ATKINSON, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ., v. 34, p. 12-14, 2063-2101, 2000. DOI: https://dx.doi.org/10.1016/S1352-2310(99)00460-4.

BEJI, A. et al. Non-exhaust particle emissions under various driving conditions: implications for sustainable mobility. Transportation Research Part D: transport and environment, v. 81, 2020, 102290, DOI: 10.1016/j. trd.2020.102290.

BIGAZZI, A. Y.; ROULEAU, M. Can traffic management strategies improve urban air quality? A review of the evidence. J. Transport Health, v. 7, p. 111–124, 2017. DOI: http://dx.doi.org/10.1016/j.jth.2017.08.001.

BRAZIL. Lei no 13.263, de 23 de março de 2016. Altera a Lei no 13.033, de 24 de setembro de 2014, para dispor sobre os percentuais de adição de biodiesel ao óleo diesel comercializado no território nacional. 2016.

BRASIL. Ministério do Meio Ambiente, 2013. Available at: http://www.mma.gov.br/images/arquivo/80060/ Inventario_de_Emissoes_por_Veiculos_Rodoviarios_2013.pdf. Accessed in: sep. 2019.

BRASIL. Ministério do Meio Ambiente, 2020. Available at: https://www.mma.gov.br/images/agenda_ambiental/ qualidade-do-ar/MMA-Guia-Tecnico-Qualidade-do-Ar.pdf. Accessed in: jun. 2021.

BRITO, J. et al. Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Nature, v. 8, 2018. DOI: https://doi.org/10.1038/s41598-018-29138-7

BRITO, J. et al. Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: results of ambient measurements in São Paulo, Brazil. Environ. Sci. Technol., v. 49, 2015. DOI: https://doi.org/10.1021/acs. est.5b03281

CETESB (Companhia Ambiental do Estado de São Paulo), 2015. Available at: https://cetesb.sp.gov.br/veicular/ relatorios-e-publicacoes/. Accessed in: aug. 2019.

CET-RIO (Companhia de Engenharia de Tráfego do Rio de Janeiro), 2016. Available at: http://www.rio.rj.gov.br/ dlstatic/10112/6594316/4177742/BoletimtecnicoOlimpiadaeParalimpiada.pdf. Accessed in: dec. 2019.

CHAKHTOURA, C.; POJANI, D. Indicator-based evaluation of sustainable transport plans: a framework for Paris and other large cities. Transport Policy, v. 50, p. 15-28, 2016. DOI: https://dx.doi.org/10.1016/j.tranpol.2016.05.014.

CNPE (Conselho Nacional de Políticas Energéticas), 2009. Available at: http://www.mme.gov.br/ documents/10584/1139155/Resoluxo_6_CNPE.pdf/0ca20397-0145-4976-8945-dbab764d773c. Accessed in: aug. 2019.

ISSN-e 2179-9067

Sustainability in Debate - Brasília, v. 13, n.3, p. 121-137, dec/2022

Impact of the transport system on air quality: the case of Rio de Janeiro, Brazil

CONAMA (Conselho Nacional do Meio Ambiente), 2008. Available at: http://www2.mma.gov.br/port/conama/ legiabre.cfm?codlegi=591. Accessed in: dec. 2019.

CONAMA (Conselho Nacional do Meio Ambiente), 2018. Available at: http://www2.mma.gov.br/port/conama/ legiabre.cfm?codlegi=740,uropeand. Accessed in: nov. 2019.

CUI, C. et al. Escaping from pollution: the effect of air quality on inter-city population mobility in China. Environ. Res. Lett., v. 14, 2019. DOI: https://doi.org/10.1088/1748-9326/ab5039 (2019) 124025.

DANTAS, G. et al. The impact of Covid-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci Total Environ., v. 729, p. 139085, 2020. DOI: https://doi. org/10.1016/j.scitotenv.2020.139085

DE LA CRUZ, A. R. H. et al. Evaluation of the impact of the Rio 2016 Olympic Games on air quality in the city of Rio de Janeiro, Brazil. Atmospheric Environment., v. 203, p. 206-215, 2019. DOI: https://doi.org/10.1016/j. atmosenv.2019.02.007

DETRAN-RJ (Departamento de Trânsito do Estado do Rio de Janeiro), 2018. Available at: http://www.detran. rj.gov.br/_estatisticas.veiculos/index.asp. Accessed in: aug. 2019.

DZIEKAN, K. Evaluation of measures aimed at sustainable urban mobility in Europeann cities – Case study Civitas Mimosa. Procedia Soc., Behav. Sci. v. 48, p. 3078-3092, 2012. DOI: https://dx.doi.org/10.1016/j. sbspro.2012.06.1274.

EEA. Air Quality in Europe, 2017 Report. EEA Report, No 13/2017.

EUROPEAN COMMISSION. 2011. Available at: https://eur-lex.europa.eu/legal-content/EN/

ALL/?uri=CELEX:52011DC0144. Accessed in: sep. 2019.

FETRANSPOR (Federação das Empresas de Transportes de Passageiros do Estado do Rio de Janeiro), 2017. Available at: https://www.fetranspor.com.br/ mobilidade-urbana-setor-em-numeros. Accessed in: aug. 2019.

GATO, L. G.; SALAZAR, N. B. Constructing a city, building a life: brazilian construction workers’continuous mobility as a permanent life strategy. Mobilities, v. 13, p. 733-745, 2018. DOI: https://doi.org/10.1080/17450101.2018.1 466504

GIODA, A. et al. Half Century Monitoring Air Pollution in a Megacity: a case study of Rio de Janeiro. Water Air Soil Pollut., v. 86, p. 1-17, 2016. DOI: https://dx.doi.org/10.1007/s11270-016-2780-8.

GIODA, A. et al. Understanding ozone formation at two islands of Rio de Janeiro, Brazil. Atmospheric Pollution Research, v. 9, n. 2, p. 278-288, 2017. DOI: http://dx.doi.org/10.1016/j.apr.2017.10.003

GODOY, M. L. D. P. et al. Coarse and Fine Aerosol Source Apportionment in Rio de Janeiro, Brazil. Atmos Environ., v. 43, p. 2366–2374, 2009. DOI: https://dx.doi.org/10.1016/j.atmosenv.2008.12.046.

GOMES, I. A. et al. Effects of urban mobility management for the Olympic Games on air quality in the central region of the city of Rio de Janeiro. Braz. J. Urban Manag., v. 10, p. 129-142, 2018. DOI: https://doi.org/10.1590/2175- 3369.010.supl1.ao07

GUO, S. et al. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmos. Chem. Phys., v. 13, p. 8303-8314, 2013. DOI: https://doi.org/10.5194/acp- 13-8303-2013

HOLMAN, C.; HARRISON, R.; QUEROL, X. Review of the efficacy of low emission zones to improve urban air quality in European cities. Atmos. Environ., v. 111, p. 161–169, 2015. DOI: https://doi.org/10.1016/j.atmosenv.2015.04.009

HULKKONENA, M. et al. The atmospheric impacts of initiatives advancing shifts towards low-emission mobility: a scoping review. Sci. Total Envir., v. 713, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.136133

INEA (Instituto Estadual do Ambiente do Rio de Janeiro), 2013. Available at: https://www.legisweb.com.br/ legislacao/?id=252061. Accessed in: sep. 2019.

INEA (Instituto Estadual do Ambiente do Rio de Janeiro), 2016a. Available at: http://www.inea.rj.gov.br/cs/ groups/public/@inter_vpres_geiat/documents/document/zwew/mti3/~edisp/inea0127611.pdf. Accessed in: sep. 2019.

INEA (Instituto Estadual do Ambiente do Rio de Janeiro), 2016b. Available at: http://www.inea.rj.gov.br/wp- content/uploads/2019/01/RQAr_2015.pdf. Accessed in: oct. 2019.

INEA (Instituto Estadual do Ambiente do Rio de Janeiro), 2018. Available at: http://200.20.53.25/qualiar/home/ index. Accessed in: nov. 2019.

IZAGA, F. BRT no Rio de Janeiro: transformações e mobilidade urbana. Proceedings of III Encontro da Associação Nacional de Pesquisa e Pós-Graduação em Arquitetura e Urbanismo – III Enanparq, October 23, 2014. São Paulo, Brazil, p. 1-16, 2014.

JUSTO, E. et al. Assessment of Atmospheric PM10 Pollution Levels and Chemical Composition in Urban Areas near the 2016 Olympic Game Arenas. J. Braz. Chem. Soc., v. 31, p. 1043-1054, 2020. DOI: https://doi. org/10.21577/0103-5053.20190270

LERNER, W.; VAN AUDENHOVE, F. J. The future of urban mobility: towards networked, multimodal cities in 2050. Alemanha: Arthur D. Little., v. 61, p. 14-18, 2012. Available at: http://www.adlittle.com/sites/default/files/ viewpoints/adl_the_future_of_urban_mobility_report.pdf. Accessed in: 20 aug. 2019.

LI, Y. et al. Impact of air pollution control measures and weather conditions on asthma during the 2008 Summer Olympic Games in Beijing. Int. J. Biometeorol., v. 55, p. 547-554, 2011. DOI: http://dx.doi.org/10.1007/s00484- 010-0373-6

LINDAU, L. A. et al. Mega events and the transformation of Rio de Janeiro into a mass-transit city. Res. Transport. Econom., v. 59, p. 196-203, 2016. DOI: http://dx.doi.org/10.1016/j.retrec.2016.07.024.

MALHEIROS, A. L. et al. Avaliação do benefício ambiental da implantação da TransOlímpica na redução das emissões atmosféricas. Rev. Transport. Públic., v. 145, p. 83-96, 2017.

MARTINS, E. M.; NUNES, A. C. L.; CORRÊA, S. M. Understanding Ozone Concentrations During Weekdays and Weekends in the Urban Area of the City of Rio de Janeiro. J. Braz. Chem. Soc., v. 26, p. 1965-1975, 2015. DOI: https://doi.org/10.5935/0103-5053.20150175

MILLER, P. et al. Analyzing the sustainability performance of public transit. Transport, Res., part D. v. 44, p. 177- 198, 2016. DOI: https://dx.doi.org/10.1016/j.trd.2016.02.012.

MITCHELL, L. E. et al. Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform. Atmos. Environ., v. 187, p. 9–23, 2018. DOI: https://doi.org/10.1016/j.atmosenv.2018.05.044

PARK, E. S.; SENER, I. N. Traffic-related air emissions in Houston: effects of light-rail transit. Sci. Total Environ., v. 651, p. 154–1161, 2019. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.169

PISONI, E. et al. Evaluating the impact of “Sustainable Urban Mobility Plans” on urban background air quality. J. Environ. Manag., v. 231, p. 249–255, 2019. DOI: https://doi.org/10.1016/j.jenvman.2018.10.039

PORTO MARAVILHA. 2021. Available at: https://portomaravilha.com.br/mobilidadeurbana. Accessed in: jul. 2021.

QIN, Y.; ZHU, H. Run away? Air pollution and emigration interests in China. J. Popul. Econ., v. 31, p. 235–266, 2018. DOI: https://doi.org/10.1007/s00148-017-0653-0

R DEVELOPMENT CORE TEAM. 2017. Available at: http://www.R-project.org/. Accessed in: dec. 2019.

RIO DE JANEIRO (Cidade). Secretaria Municipal de Conservação e Meio Ambiente do Rio de Janeiro, 2018. Available at: http://www.data.rio/datasets/5b1bf5c3e5114564bbf9b7a372b85e170. Accessed in: dec. 2019.

RIO DE JANEIRO (Cidade). Secretaria Municipal do Meio Ambiente do Rio de Janeiro, 2013. Available at: http:// www.rio.rj.gov.br/documents/91265/3252594/Relatorio+Monitorar++2011-2012.pdf. Accessed in: nov. 2019.

RIO DE JANEIRO (Cidade). Secretaria Municipal de Transportes do Rio de Janeiro, 2015. Available at: http:// cpidosonibus.com.br/documentos/. Acessed in: nov. 2019.

RIO DE JANEIRO (Cidade). Secretaria Municipal de Transportes do Rio de Janeiro, 2016. Available at: http://www. portomaravilha.com.br/conteudo/release/NOVO%20CENTRO%20PPT%20-%20Rio%20Branco.pdf. Accessed in: nov. 2019.

RIO DE JANEIRO (Cidade). Secretaria Municipal de Transportes do Rio de Janeiro, 2019a. Available at: http://www. rio.rj.gov.br/web/transparenciadamobilidade/. Accessed in: oct. 2019.

RIO DE JANEIRO (Cidade). Secretaria Municipal de Transportes do Rio de Janeiro, 2019b. Available at: http:// www.rio.rj.gov.br/web/smtr/exibeconteudo?id=6254164. Accessed in: oct. 2019.

RIO DE JANEIRO (Cidade). Secretaria Municipal de Urbanismo, 2015. Available at: http://www.rio.rj.gov.br/ dlstatic/10112/6028774/4158532/DiagnosticoUrbanoCTPD2015.pdf. Accessed in: mar. 2020.

RIO DE JANEIRO (Estado). Secretaria do Estado de Ambiente, 2011. Available at: http://www.inea.rj.gov.br/cs/ groups/public/documents/document/zwew/mde1/~edisp/inea0015448.pdf. Accessed in: sep. 2019.

RIO DE JANEIRO (Estado). Secretaria do Estado de Ambiente, 2017. Available at: http://www.rj.gov.br/c/ document_library/get_file?uuid=5eb60cf8-47ef-4d7a-9bb0- 4f097ea7dadd&groupId=132946. Accessed in: sep. 2019.

RIO DE JANEIRO. Lei complementar no 101, de 23 de novembro de 2009. Modifica o Plano Diretor, autoriza o Poder Executivo a instituir a Operação Urbana Consorciada da Região do Porto do Rio e dá outras providências. 2009.

SANTOS, A. S.; RIBEIRO, S. K. The role of transport indicators to the improvement of local governance in Rio de Janeiro City: a contribution for the debate on sustainable future. Case Stud. Transp. Policy, v. 3, p. 415-420, 2015. DOI: https://dx.doi.org/10.1016/j.cstp.2015.08.006.

SANTOS NETO, S. C. et al. Rio 2016 Olympics: urban regeneration and social legacy. J. Human Sport Exerc., v. 13, S116-S133, 2018. DOI: https://doi.org/10.14198/jhse.2018.13.Proc1.10

SETRERJ (Sindicato das Empresas de Transportes Rodoviários do Estado do Rio de Janeiro), 2003. Available at: http://setrerj.org.br/wp-content/uploads/2017/07/175_pdtu.pdf. Accessed in: jul. 2019.

VEJA-RIO. 2017. Available at: https://vejario.abril.com.br/cidade/centro-ganhara-novas-ciclovias-bicicletarios/. Accessed in: jul. 2021.

VENTURA, L. M. B. et al. Evaluation of air quality in a megacity using statistics tools. Meteorol. Atmos. Phys., v. 130, p. 361–370, 2017. DOI: https://dx.doi.org/10.1007/s00703-017-0517-x.

VENTURA, L. M. B. et al. Air quality monitoring assessment during the 2016 Olympic Games in Rio de Janeiro, Brazil. Environ. Monit. Assess., v. 191, 2019a. DOI: https://doi.org/10.1007/s10661-019-7496-y

VENTURA, L. M. B. et al. Monitoring of air quality before the Olympic Games Rio 2016. An Acad. Bras. Cienc., v. 91, 2019b. DOI: http://dx.doi.org/10.1590/0001-3765201920170984.

VENTURA, L. M. B. et al. Inspection and Maintenance Programs for In-Service Vehicles: an important air pollution control tool. Sustain. Cities Soc., v. 53, 2020. DOI: https://doi.org/10.1016/j.scs.2019.101956.

VLT RIO (Veículo Leve sobre Trilho Rio), 2019. Available at: http://www.vltrio.com.br/#/noticias/vlt_news_ site_115. Accessed in: jul. 2019.

WANG, T. et al. Air quality during the 2008 650 Beijing Olympics: secondary pollutants and regional impact. Atmos. Chem. Phys., v. 10, p. 7603-7615, 2010.

WEIAND, L. et al. Climate change and air pollution: the connection between traffic intervention policies and public acceptance in a local context. Environ. Res. Lett., v. 14, 2019. DOI: https://doi.org/10.1088/1748-9326/ ab3d81

Téléchargements

Publié-e

2022-12-29

Comment citer

Ventura, L. M. B., Almeida, I. R. P. L. de, Ramos, M. B., D’agosto, M. de A., & Gioda, A. (2022). Impact of the transport system on air quality: the case of Rio de Janeiro, Brazil. Sustainability in Debate, 13(3), 121–137. https://doi.org/10.18472/SustDeb.v13n3.2022.44993