Assessment of photovoltaic generation, supply, and sustainability: a case study of municipalities in São Paulo state

Autores

  • Nilo Amaral Martin MSc in Biometry, PhD student, Instituto de Ciência e Tecnologia de Sorocaba - ICTS, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Sorocaba, SP, Brazil https://orcid.org/0000-0002-1848-9751
  • Antonio Cesar Germano Martins PhD in electrical engineering, professor at Instituto de Ciência e Tecnologia de Sorocaba - ICTS, Instituto de Ciência e Tecnologia de Sorocaba- ICTS, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Sorocaba, SP, Brazil https://orcid.org/0000-0002-7683-8729

DOI:

https://doi.org/10.18472/SustDeb.v12n2.2021.37015

Palavras-chave:

Sustainable energy. Photovoltaic generation. Sustainability. Distributed generation. Modelling.

Resumo

Energy consumption has been increasing together with population growth and the consequences for energy production widely generate discussions under the aspect of environmental outcome and supply reliability and quality. This paper proposes a methodology that allows the estimation of the potential for cities to be more independent in terms of centralized generation and distribution of electricity considering photovoltaic sources. Sustainability and environmental performance are also discussed. The methodology aims to assess some municipalities in the São Paulo state. The results showed high potential for photovoltaic supply in those municipalities under the considered conditions indicating the possibility for structuring a decentralized generation model where cities would be more independent in electricity supply. Implementing the required photovoltaic systems would return the energy consumed during their life cycle in a relatively short period compared to their expected lifetime.

Downloads

Não há dados estatísticos.

Biografia do Autor

Nilo Amaral Martin, MSc in Biometry, PhD student, Instituto de Ciência e Tecnologia de Sorocaba - ICTS, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Sorocaba, SP, Brazil

MSc in Biometry by Programa de Pós-Graduação em Biometria -  Instituto de Biociências de Botucatu – IBB - UNESP, works with data analysis, statistics and mathematical modelling.  

Antonio Cesar Germano Martins, PhD in electrical engineering, professor at Instituto de Ciência e Tecnologia de Sorocaba - ICTS, Instituto de Ciência e Tecnologia de Sorocaba- ICTS, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Sorocaba, SP, Brazil

PhD in electrical engineering by Universidade de São Paulo - USP, works with digital image processing and artificial intelligence models applied to environmental analysis. 

Referências

ARENALES, S.; DAREZZO, A. Cálculo Numérico: aprendizagem com apoio de software. 2. ed. São Paulo: Cengage Learning, 2017. ISBN 978-85-221-1287-6.

ASSOULINE, D.; MOHAJERI, N.; SCARTEZZINI, J. Quantifying rooftop photovoltaic solar energy potential: a machine learning approach. Solar Energy, v. 141, p. 278-296, 2017.

BANCO DE INFORMAÇÕES DE GERAÇÃO. Agência Nacional de Energia Elétrica – Aneel. Available at: http://www2.aneel.gov.br. Accessed on: set. 2019.

BRASIL. Balanço energético nacional 2019: ano-base 2018. Rio de Janeiro: Empresa de Pesquisa Energética – EPE, 2019.

CPFL. Caracterização da Carga da CPFL Paulista. Available at: http://www.consultaesic.cgu.gov.br/busca/dados/Lists/Pedido/Attachments/564587/RESPOSTA_PEDIDO_Relatrio%20de%20Caracterizao%20da%20Carga%20-%20PAULISTA.pdf. Accessed on: maio, 2020.

CRECESB. Centro de Referência para as Energias Solar e Eólica Sérgio de S. Brito. Ministério de Minas e Energia – MME. Available at: http://www.cresesb.cepel.br/index.php?section=sundata. Accessed on: jan. 2020.

D’ADAMO, I. The profitability of residential photovoltaic systems. A new scheme of subsidies based on the price of CO2 in a developed PV market. Social Sciences,

v. 7, n. 148, p. 21, 2018.

FONSECA, J. A.; SCHLUETER, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, v. 142, p. 247-265, 2015.

FRISCHKNECHT, R. et al. Methodology guidelines on life cycle assessment of photovoltaic electricity. 3. ed. [S.l.], 2016. Report.

GOLDEMBERG, J. Energia e sustentabilidade: revista de cultura e extensão, 2015.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Available at: https://cidades.ibge.gov.br/. Accessed on: set. 2019.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. DGC/Coordenação de Geografia, DGC/Coordenação de Cartografia. Available at: https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15789-areas-urbanizadas.html?=&t=downloads. Accessed on: jul. 2020.

INSTITUTO NACIONAL DE METEOROLOGIA. Estações meteorológicas de observação de superfície automática. Instituto Nacional de Meteorologia. Ministério da Agricultura, Pecuária e Abastecimento. Available at: http://www.inmet.gov.br/. Accessed on: ago. 2019.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Sistema de organização nacional de dados ambientais. Estações de medição de dados ambientais. Instituto Nacional de Pesquisas Espaciais. Available at: http://sonda.ccst.inpe.br/index.html. Accessed on: ago. 2019.

INTERNATIONAL ENERGY AGENCY. Energy Demand: Global Energy and CO2 Status Report 2018. Paris: International Energy Agency – IEA, 2018.

KALOGIROU, S. A. Solar Energy Engineering: processes and systems. 2. ed. [S.l.]: Elsevier, 2014. ISBN 978-0-12-397270-5.

LIMA, G. C. d.; TOLEDO, A. L. L.; BOURIKAS, L. The role of national energy policies and life cycle emissions of pv systems in reducing global net emissions of greenhouse gases. Energies, v. 14, n. 4, 2021. ISSN 1996–1073. Available at:

https://www.mdpi.com/1996-1073/14/4/961. Acessed on: sep. 2020.

LUKAC, N. et al. Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data. Energy,

v. 107, p. 854-865, 2016.

MARTíN, A. M.; DOMíNGUEZ, J.; AMADOR, J. Applying lidar datasets and GIS based model to evaluate solar potential over roofs: a review. AIMS Energy, v. 3, n. 3, p. 326-343, 2015.

MATLAB. Version 7.10.0 (R2010a), Natick, Massachusetts: The MathWorks Inc. 2010.

NERO, M. A. et al. Case study of a model of local solar radiation potential and discussion on the associated sustainable applications and potentials. Sustainability in Debate, v. 11, n. 2, p. 173-189, 2020.

ONAT, N.; BAYAR, H. The sustainability indicators of power production systems. Renewable and Sustainable Energy Reviews, v. 14, p. 3108-3115, 2010.

PENG, J.; LU, L.; YANG, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, v. 19, p. 255-274, 2013.

PEREIRA, E. B. et al. Atlas brasileiro de energia solar. São José dos Campos: Instituto Nacional de Pesquisas Espaciais (Inpe), 2017. ISBN 978-85-17-00089-8.

REN21. Renewables 2018 – Global Status Report. 2019.

SANTOS, T. et al. Applications of solar mapping in the urban environment. Applied Geography, v. 51, p. 48-57, 2014.

SANTOYO-CASTELAZO, E.; AZAPAGIC, A. Sustainability assessment of energy systems: integrating environmental, economic and social aspects. Journal of Cleaner Production, v. 80, p. 119-138, 2014.

SÃO PAULO (estado). Anuário de energéticos por município no estado de São Paulo – 2018. Ano-base 2017. São Paulo: Secretaria de Energia e Mineração, 2018.

STEWART, J. Cálculo. 7. ed. São Paulo: Cengage Learning, 2015. ISBN 978-85-221-1259-3.

SUN, Y. et al. GIS-based approach for potential analysis of solar pv generation at the regional scale: a case study of Fujian province. Energy Policy, v. 58, p. 248-259, 2013.

TOLMASQUIM, M. T. Energia Renovável: hidráulica, biomassa, eólica, solar, oceânica. Rio de Janeiro: Empresa de Pesquisa Energética (EPE), 2016. ISBN 978-85-60025-06-0.

WILD-SCHOLTEN, M. J. Energy payback time and carbon footprint of commercial photovoltaic systems. Solar EnergyMaterials & SolarCells, v. 119, p. 296-305, 2013.

WINTERLE, P. Vetores e geometria analítica. 2. ed. São Paulo: Pearson Education do Brasil, 2014. ISBN 978-85-430-0239-2.

WU, P. et al. Review on life cycle assessment of energy payback of solar photovoltaic systems and a case study. Energy Procedia, v. 105, p. 68-74, 2017.

YUE, D.; YOU, F.; DARLING, S. B. Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: life cycle energy and environmental comparative analysis. Solar Energy, v. 106, p. 669-678, 2014.

Downloads

Publicado

2021-08-30 — Atualizado em 2021-09-08

Versões

Como Citar

Martin, N. A., & Martins, A. C. G. (2021). Assessment of photovoltaic generation, supply, and sustainability: a case study of municipalities in São Paulo state. Sustainability in Debate, 12(2), 51–78. https://doi.org/10.18472/SustDeb.v12n2.2021.37015 (Original work published 30º de agosto de 2021)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.