Avaliação do comportamento em campo de solo reforçado com fibras de PET para bases de radier

Auteurs-es

DOI :

https://doi.org/10.18830/issn.1679-0944.n29.2021.03

Mots-clés :

Fibra de polietileno tereftalato (PET); Capacidade de suporte; Deslocamentos.

Résumé

Atualmente, o uso de radier em edificações de pequeno porte tem se intensificado, no entanto, essa alternativa não pode ser usada em solos de baixa capacidade de carga. Uma alternativa é a de se promover uma melhoria ou reforço da camada de base. Para tanto, este trabalho faz-se uma avaliação do comportamento mecânico de um solo arenoso fino reforçado com fibras de tereftalato (PET) para uso como base de radier. Foram usados modelos de reforço executados em campo com camadas de 300 mm de espessura de solo compactado nas condições ótimas de compactação reforçado com 1 % de fibras de PET.  Avaliação do desempenho foi feita usando ensaios de provas de carga estática em placa circular de 340 mm de diâmetro. Foram realizados ensaios em três condições: solo reforçado com fibra, Solo compactado sem reforço e no solo natural. Os resultados mostraram que a adição de fibra melhora a capacidade de carga, aumenta a rigidez, diminuindo os deslocamentos para as cargas de serviço, sendo que a superfície de ruptura mobiliza uma maior região. Conclui-se que a adição de fibra melhora o desempenho da camada de base, apresentando ganho de capacidade de carga, no entanto, esse ganho ocorre para grandes deslocamentos.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

João de Freitas, Universidade Estadual de Maringa

Professor temporário em estrutura/ Universidade Estadual De Maringá (UEM) ”“ CTC ”“ DTC /Universidade Estadual de Maringá (UEM)

Paula Polastri, Universidade Estadual de Maringá

Engenheira Ambiental / Mestra em Engenharia Urbana e Doutoranda em Engenharia Química. Pós-graduação em Engenharia Química (PEQ) / Departamento de Engenharia Química (DEQ) / Universidade Estadual de Maringá (UEM)

Generoso De Angelis Neto, Universidade Estadual de Maringá

Graduação em Engenharia Civil. Mestrado em Geotecnia/ Doutorado em Engenharia de Construção Civil e Urbana. Professor Titular em Construção Civil - Gestão de Resíduos da Construção Civil/ Departamento de Engenharia Civil da Universidade Estadual de Maringá (DEC)/ Universidade Estadual de Maringá (UEM).

Antonio Belincanta, Universidade Estadual de Maringá

Graduação em Engenharia Civil pela Universidade Federal do Paraná (1973), graduação em Administração de Empresas pela Pontifícia Universidade Católica do Paraná (1973), mestrado em Engenharia de Solos pela Universidade de São Paulo (1985) e doutorado em Engeharia Civil Geotecnia S Carlos pela Universidade de São Paulo (1998). Professor associado da Universidade Estadual de Maringá/ Departamento de Engenharia Civil da Universidade Estadual de Maringá (DEC)/ Universidade Estadual de Maringá (UEM).

Jeselay Hemetério Cordeiro dos Reis, Universidade Estadual de Maringá

Graduação em Engenharia Civil pela Universidade Federal do Rio Grande do Norte (1997), mestrado em Geotecnia pela Universidade de São Paulo (2000) e doutorado em Geotecnia pela Universidade de São Paulo (2006). Professor adjunto da Universidade Estadual de Maringá/ Departamento de Engenharia Civil da Universidade Estadual de Maringá (DEC)/ Universidade Estadual de Maringá (UEM).

Références

Anggraini, V., Asadi, A., Syamsir, A., & Huat, B. B. (2017). Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber. Measurement, 111, 158-166.

Amin Soltani, A., Deng, A.,Taheri, A., “Swell”“compression characteristics of a fiber reinforced expansive soil”. Geotextiles and Geomembranes, v. , n. , pp. 183”“189, Jan. 2018.

American Society For Testing And Materials. D1196M-12: standard test method for nonrepetitive static plate load tests of soils and flexible pavement components, for use in evalution and design of airport and highway pavements, United States, ASTM, 2016.

American Society For Testing And Materials. D3080M-11: Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM, 2011.

American Society For Testing And Materials. D882-18: Standard test method for tensile properties of thin plastic sheeting, United States, ASTM, 2018.

Budhu, M. Fundações e estruturas de contenção. 1. ed. Rio de Janeiro: LTC, 20.

By M. H. Maher, M.H., Ho, Y. C., 1994. Mechanical properties of kaolinite/fiber soil composite. Journal of Geotechnical Engineering, 120(8): 1381-1393.

Correia, A.S.A., Oliveira, P.J.V., Custodio, D.G., 2015. “Effect of polypropylene fibres on the com-pressive and tensile strength of a soft soil artificially stabilised with binders”. Geotext. Geomembranes, Volume 43, April 2015, pp 97-106.

Casagrande, M.D.T., Comportamento de solos reforçados com fibras submetidos a grandes deformações, Tese de D. Sc., PPEC/UFRGS, Porto Alegre, RS, Brasil, 2005.

Consoli, N.C., Montardo, J.P., Donato, M., Prietto, P.D.M., “Effect of material properties on the behaviour of sand”“cement”“fibre composites”, Ground Improvement, v.8, n. 2, p.77”“90, 2004.

Chen, M., Shen, S.L., Arulrajah, A., Wu, H.N., Hou, D.W., Xu, Y.S., 2015. Laboratory evalution on the effectiveness of polypropylene fibers on tne strenght of fiber-reinforced and cement-stabilized shanghai soft clay.Geotextiles and geomembranes 43:515-523.

Consoli, N.C., Vendruscolo, A. M., Prietto, P.D.M., 2003. Behavior of Plate Load Tests on Soil Layers Improved with Cement and Fiber. Journal of Geotechnical and Geoenvironmental Engineeringn 129(1):96-101.

Consoli, N.C., Schnaid, F., Milititsky, J., 1998. INTERPRETATION OF PLATE LOAD TESTS ON RESIDUAL SOIL SITE .Journal of Geotechnical and Geoenvironmental Engineering, 124(9): 857-867

Estabragh, A.R., Rafatjo, H., Javadi, A.A., 2014. “Treatment of an expansive soil by me-chanical and chemical techniques”. Geosynth.Volume 21 Issue 3, June 2014, pp. 233-243.

Festugato, L., Menger, E., Benezra, F., Kipper, E.A., Consoli, N.C., 2017. “Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length”. Geotext. Geomem-branes, Volume 45, February 2017, pp 77-82.

Gray, D.; Ohashi, H., “Mechanics of fiber reinforced in sand”, Journal of Geotechnical Engi-neering, New York, v.109, n.3, p.335-353, 1983.

Jha, A.K., Sivapullaiah, P.V., “Gypsum”“induced volume change behavior of stabilized expan-sive soil with fly ash”“lime”. Geotech. Volume 39,May 2016, pp. 391”“406.

Kumar, A., Gupta, D., “Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash”“soil mixtures”. Geotext. Geomembranes, Volume 44, Issue 3, June 2016, pp 466-474.

Li, Y., Ling. X., Su, L., An, L., Li, P., Zhao, Y., 2018. Tensile strength of fiber reinforced soil under freeze-thaw condition. Cold regions science and technology 146: 53-59.

Medina, J.; Motta, L. M. G., “Mecânica dos pavimentos”, 3 ed.. Rio de Janeiro, Interciência, 2005.

Neto, P.S.L., Gonçalves, H.B.B., Oliveira, F.H.L., Aguiar, M.F.P., “Estudo de utilização de fibras de polipropileno como reforço em solo para a pavimentação rodoviária”, In: 45ª RAPV ”“ Reunião anual de Pavimentação 19º ENACOR ”“ Encontro Nacional de Conservação Rodoviária, 1º Fórum rod-oviário de trânsito e de mobilidade, pp. 20-23, Brasília, DF, Set. 2016.

Polastri, P., Incorporação de resíduos de polietileno tereftalato (PET) como reforço em compó-sitos solo-cimento, Dissertação de M.Sc., DEC-PEU/UEM, Maringá, PR, Brasil, 2017.

Sharma, V., Kumar, A., 2017. Influence of relative density of soil on performance of fiber-reinforced soil foundations. Geotextiles and Geomembranes 45: 499 e 507

Tang, C.S., Shi, B., Zhao, L.Z., 2010. Interfacial shear strength of fiber reinforced soil. Geotextiles and geomembranes 28: 54-62.

Tang, C.S., Li, J.,Wang, D., Shi, B., 2016. Investigation on the interfacial mechanical behavior of wave-shaped fiber reinforced soil by pullout test. Geotextiles and geomembranes 44: 872-883.

Vendruscolo, M.A., Comportamento de ensaios de placa em camadas de solo melhoradas com ci-mento e fibras de polipropileno, Tese de D. Sc., PPEC/ UFRGS, Porto Alegre, RS, Brasil, 2003.

Jamsawanga, P., Suansomjeenb, T., Sukontasukkulc, P., Jongpradistd, P.,BergadoE, D. T. “Comparative flexural performance of compacted cement-fiber-sand”. Geotexti-les and Geomembranes, v. , n., pp 414”“425, Mar. 2018.

Jiang, H., Cai, Y., Liu, Jin., 2010 .Engineering Properties of Soils Reinforced by Short Discrete Polypropylene Fiber.JOURNAL OF MATERIALS IN CIVIL ENGINEERING 22(12): 1315-1322.

Téléchargements

Publié-e

2021-02-09

Comment citer

de Freitas, J., Polastri, P., De Angelis Neto, G., Belincanta, A., & Hemetério Cordeiro dos Reis, J. . (2021). Avaliação do comportamento em campo de solo reforçado com fibras de PET para bases de radier. Paranoá, 14(29). https://doi.org/10.18830/issn.1679-0944.n29.2021.03

Numéro

Rubrique

Tecnologia, Ambiente e Sustentabilidade

Articles similaires

<< < 1 2 3 4 > >> 

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.