Evaluation of behavior in soil field reinforced with PET fibers for mat foundations
DOI:
https://doi.org/10.18830/issn.1679-0944.n29.2021.03Keywords:
Polyethylene terephthalate fiber; Load capacity; Displacements.Abstract
Currently, the use of mat foundations in small buildings has intensified, however, this alternative cannot be used in soils with low load capacity. An alternative is to promote an improvement or reinforcement of the base layer. For this purpose, this work is an evaluation of the mechanical behavior of a fine sandy soil reinforced with terephthalate (PET) fibers for use as a mat foundations base. Reinforcement models performed in the field with layers of 300 mm thick compacted soil were used in the optimal conditions of compaction reinforced with 1% PET fibers. Performance evaluation was performed using static load tests on a 340 mm diameter circular plate. Tests were carried out in three conditions: soil reinforced with fiber, soil compacted without reinforcement and natural soil. The results showed that the addition of fiber improves the load capacity, increases the rigidity, decreasing the displacements for the service loads, and the rupture surface mobilizes a larger region. It is concluded that the addition of fiber improves the performance of the base layer, presenting a gain in load capacity, however, this gain occurs for large displacements.
Downloads
References
Anggraini, V., Asadi, A., Syamsir, A., & Huat, B. B. (2017). Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber. Measurement, 111, 158-166.
Amin Soltani, A., Deng, A.,Taheri, A., “Swell”“compression characteristics of a fiber reinforced expansive soil”. Geotextiles and Geomembranes, v. , n. , pp. 183”“189, Jan. 2018.
American Society For Testing And Materials. D1196M-12: standard test method for nonrepetitive static plate load tests of soils and flexible pavement components, for use in evalution and design of airport and highway pavements, United States, ASTM, 2016.
American Society For Testing And Materials. D3080M-11: Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM, 2011.
American Society For Testing And Materials. D882-18: Standard test method for tensile properties of thin plastic sheeting, United States, ASTM, 2018.
Budhu, M. Fundações e estruturas de contenção. 1. ed. Rio de Janeiro: LTC, 20.
By M. H. Maher, M.H., Ho, Y. C., 1994. Mechanical properties of kaolinite/fiber soil composite. Journal of Geotechnical Engineering, 120(8): 1381-1393.
Correia, A.S.A., Oliveira, P.J.V., Custodio, D.G., 2015. “Effect of polypropylene fibres on the com-pressive and tensile strength of a soft soil artificially stabilised with binders”. Geotext. Geomembranes, Volume 43, April 2015, pp 97-106.
Casagrande, M.D.T., Comportamento de solos reforçados com fibras submetidos a grandes deformações, Tese de D. Sc., PPEC/UFRGS, Porto Alegre, RS, Brasil, 2005.
Consoli, N.C., Montardo, J.P., Donato, M., Prietto, P.D.M., “Effect of material properties on the behaviour of sand”“cement”“fibre composites”, Ground Improvement, v.8, n. 2, p.77”“90, 2004.
Chen, M., Shen, S.L., Arulrajah, A., Wu, H.N., Hou, D.W., Xu, Y.S., 2015. Laboratory evalution on the effectiveness of polypropylene fibers on tne strenght of fiber-reinforced and cement-stabilized shanghai soft clay.Geotextiles and geomembranes 43:515-523.
Consoli, N.C., Vendruscolo, A. M., Prietto, P.D.M., 2003. Behavior of Plate Load Tests on Soil Layers Improved with Cement and Fiber. Journal of Geotechnical and Geoenvironmental Engineeringn 129(1):96-101.
Consoli, N.C., Schnaid, F., Milititsky, J., 1998. INTERPRETATION OF PLATE LOAD TESTS ON RESIDUAL SOIL SITE .Journal of Geotechnical and Geoenvironmental Engineering, 124(9): 857-867
Estabragh, A.R., Rafatjo, H., Javadi, A.A., 2014. “Treatment of an expansive soil by me-chanical and chemical techniques”. Geosynth.Volume 21 Issue 3, June 2014, pp. 233-243.
Festugato, L., Menger, E., Benezra, F., Kipper, E.A., Consoli, N.C., 2017. “Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length”. Geotext. Geomem-branes, Volume 45, February 2017, pp 77-82.
Gray, D.; Ohashi, H., “Mechanics of fiber reinforced in sand”, Journal of Geotechnical Engi-neering, New York, v.109, n.3, p.335-353, 1983.
Jha, A.K., Sivapullaiah, P.V., “Gypsum”“induced volume change behavior of stabilized expan-sive soil with fly ash”“lime”. Geotech. Volume 39,May 2016, pp. 391”“406.
Kumar, A., Gupta, D., “Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash”“soil mixtures”. Geotext. Geomembranes, Volume 44, Issue 3, June 2016, pp 466-474.
Li, Y., Ling. X., Su, L., An, L., Li, P., Zhao, Y., 2018. Tensile strength of fiber reinforced soil under freeze-thaw condition. Cold regions science and technology 146: 53-59.
Medina, J.; Motta, L. M. G., “Mecânica dos pavimentos”, 3 ed.. Rio de Janeiro, Interciência, 2005.
Neto, P.S.L., Gonçalves, H.B.B., Oliveira, F.H.L., Aguiar, M.F.P., “Estudo de utilização de fibras de polipropileno como reforço em solo para a pavimentação rodoviária”, In: 45ª RAPV ”“ Reunião anual de Pavimentação 19º ENACOR ”“ Encontro Nacional de Conservação Rodoviária, 1º Fórum rod-oviário de trânsito e de mobilidade, pp. 20-23, Brasília, DF, Set. 2016.
Polastri, P., Incorporação de resíduos de polietileno tereftalato (PET) como reforço em compó-sitos solo-cimento, Dissertação de M.Sc., DEC-PEU/UEM, Maringá, PR, Brasil, 2017.
Sharma, V., Kumar, A., 2017. Influence of relative density of soil on performance of fiber-reinforced soil foundations. Geotextiles and Geomembranes 45: 499 e 507
Tang, C.S., Shi, B., Zhao, L.Z., 2010. Interfacial shear strength of fiber reinforced soil. Geotextiles and geomembranes 28: 54-62.
Tang, C.S., Li, J.,Wang, D., Shi, B., 2016. Investigation on the interfacial mechanical behavior of wave-shaped fiber reinforced soil by pullout test. Geotextiles and geomembranes 44: 872-883.
Vendruscolo, M.A., Comportamento de ensaios de placa em camadas de solo melhoradas com ci-mento e fibras de polipropileno, Tese de D. Sc., PPEC/ UFRGS, Porto Alegre, RS, Brasil, 2003.
Jamsawanga, P., Suansomjeenb, T., Sukontasukkulc, P., Jongpradistd, P.,BergadoE, D. T. “Comparative flexural performance of compacted cement-fiber-sand”. Geotexti-les and Geomembranes, v. , n., pp 414”“425, Mar. 2018.
Jiang, H., Cai, Y., Liu, Jin., 2010 .Engineering Properties of Soils Reinforced by Short Discrete Polypropylene Fiber.JOURNAL OF MATERIALS IN CIVIL ENGINEERING 22(12): 1315-1322.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Paranoá: journal of Architecture and Urbanism
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista. http://creativecommons.org/licenses/by/4.0
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).