Predictors of Students’ Mathematics Achievement in Secondary Education

Authors

DOI:

https://doi.org/10.1590/0102.3772e3638

Keywords:

Mathematics, Secondary education, Prediction, Regression tree, National Exam for Secondary Education

Abstract

Acknowledging the relevance of mathematics education, as well the evidence about predictors related to achievement in this domain, the present study performed a predictive analysis of students’ mathematics achievement in the National Exam for Secondary Education, employing the Regression Tree Method and a model with 53 predictors. Results indicated that the model explained 29.97% of the mathematics achievement variance. Certain variables are related to worse achievement in mathematics: Students’ family monthly income equal or smaller than 2 minimum wages, be female, have not attended Primary and Secondary Education in private schools, live in North, North East and Center West regions of Brazil, be highly motivated to perform the exam to obtain Secondary Education certificate or scholarship. The results obtained highlight the role of variables related to the individual, school and family as predictors of mathematics achievement.

Downloads

Download data is not yet available.

References

Akben-Selcuk, E. (2017). Personality, Motivation, and Math Achievement among Turkish Students: Evidence from PISA Data. Perceptual and Motor Skills, 124, 514-530. http://doi.org/10.1177/0031512516686505

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Chapman & Hall/CRC.

European Commission. (2011). Mathematics Education in Europe: Common Challenges and National Policies. Education, Audiovisual and Cultural Executive Agency, Eurydice.

Gomes, C. M. A., & Almeida, L. S. (2017). Advocating the Broad Use of the Decision Tree Method in Education. Practical Assessment, Research & Evaluation, 22(10), 1-10. https://doi.org/10.7275/2w3n-0f07

Gomes, C. M. A., Golino, H. F., & Peres, A. J. S. (2016). Investigando a Validade Estrutural das Competências do ENEM: Quatro Domínios Correlacionados ou Um Modelo Bifatorial? [Investigating the Structural Validity of the Competencies of ENEM: Four Correlated Domains or A Bifactorial Model?]. Boletim na Medida, 5(10), 33-38.

Gomes, C. M. A., Golino, H. F., & Peres, A. J. S. (2018). Análise da fidedignidade composta dos escores do ENEM por meio da análise fatorial de itens [Analysis of the Composite Reliability of the Scores of ENEM via Factor Analysis of Items]. European Journal of Education Studies, 5, 331-344. http://doi.org/10.5281/zenodo.2527904

Hampden-Thompson, G. (2013). Family Policy, Family Structure, and Children’s Educational Achievement. Social Science Research, 42, 804-817. http://doi.org/10.1037/0022-0663.95.1.124

Hanushek, A. E., & Woessmann, L. (2011). The Cost of Low Educational Achievement in the European Union (Report No. 7). European Expert Network on Economics of Education (EENEE). http://www.eenee.de/dms/EENEE/Policy_Briefs/PolicyBrief1-2011.pdf

Instituto Brasileiro de Geografia e Estatística (IBGE) (2019). Síntese de Indicadores Sociais: Uma Análise das Condições de Vida da População Brasileira [Synthesis of Social Indicators: An Analysis of the Living Conditions of the Brazilian Population]. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101678.pdf

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. Springer. https://doi.org/10.1007/978-1-4614-7138-7

Karakolidis, A., Pitsia, V., & Emvalotis, A. (2016). Examining Students’ Achievement in Mathematics: A Multilevel Analysis of the Programme for International Student Assessment (PISA) 2012 Data for Greece. International Journal of Educational Research, 79, 106-115. http://doi.org/10.1016/j.ijer.2016.05.013

Kuhn, M. (2017). caret: Classification and Regression Training. https://CRAN.Rproject.org/package=caret

Lantz, B. (2015). Machine Learning with R. Packt.

Laros, J. A., Marciano, J. L. P., & Andrade, J. M. (2010). Fatores que Afetam o Desempenho na Prova de Matemática do SAEB: Um Estudo Multinível [Factors that Affect the Performance on the SAEB Mathematics Test: A Multilevel Study]. Avaliação Psicológica, 9, 173-186.

Lee, J., & Stankov, L. (2013). Higher-Order Structure of Noncognitive Constructs and Prediction of PISA 2003 Mathematics Achievement. Learning and Individual Differences, 26, 119-130. http://doi.org/10.1016/j.lindif.2013.05.004

Martin, A. J., & Lazendic, G. (2018). Achievement in Large Scale National Numeracy Assessment: An Ecological Study of Motivation and Student, Home, and School Predictors. Journal of Educational Psychology, 110, 565-482. http://doi.org/10.1037/edu0000231

Mello, M. B. J. B., & Leme, M. I. S. (2016). Motivação de Alunos dos Cursos Superiores de Tecnologia. Psicologia Escolar e Educacional, 20, 581-590. http://doi.org/10.1590/2175-3539201502031053

Ministério da Educação (MEC)/Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). (1998). Portaria Normativa nº 438, de 28 de maio de1998. DOU de 01 jun. 1998, nº 102-E, seção 1, p. 5. http://www.normasbrasil.com.br/norma/?id=181137

Ministério da Educação (MEC)/Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). (2012). Microdados do ENEM - 2011, Exame Nacional do Ensino Médio: Manual do usuário. MEC/INEP. http://portal.inep.gov.br/web/guest/microdados

Ministério da Educação (MEC)/Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). (2013). Exame Nacional do Ensino Médio (Enem): Relatório pedagógico 2009-2010. INEP/MEC. http://portal.inep.gov.br/documents/186968/484421/Relatório+Pedagógico+ENEM+2009-2010/70890e24-a78a-44f8-a909-b235f02948f2?version=1.1

Ministério da Educação (MEC)/Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). (2015). Relatório pedagógico: ENEM 2011-2012. INEP. http://www.publicacoes.inep.gov.br/portal/download/1401

Ministério da Educação (MEC) (2017). Portaria no468 de 3 de abril de 2017. http://download.inep.gov.br/educacao_basica/enem/legislacao/2017/Portaria_mec_gm_n468_de_03042017_dispoe_sobre_a_realizacao_do_enem.pdf

Monteiro, S. C., Almeida, L. S., & Vasconcelos, R. M. C. F. (2012). Abordagens à Aprendizagem, Autorregulação e Motivação: Convergência no Desempenho Acadêmico Excelente [Approaches to Learning, Self-Regulation and Motivation: Their Convergence on excellent Academic Performance]. Revista Brasileira de Orientação Profissional, 13, 153-162.

Organization for Economic Co-operation and Development (OECD) (2016). Results from PISA 2015. http://download.inep.gov.br/acoes_internacionais/pisa/resultados/2015/pisa_2015_brazil.pdf

Pangeni, K. P. (2014). Factors Determining Educational Quality: Student Mathematics Achievement in Nepal. International Journal of Educations Research, 34(1), 30-41. http://doi.org/10.1016/j.ijedudev.2013.03.001

Pinto, J., Carvalho e Silva, J., & Bixirão Neto, T. (2016). Fatores Influenciadores dos Resultados de Matemática de Estudantes Portugueses e Brasileiros no PISA: Revisão Integrativa [Influencing Factors on the Mathematics Results of Portuguese and Brazilian Students in PISA: Integrative Review]. Ciência e Educação, 22(4), 837-853. http://doi.org/10.1590/1516-731320160040002

Pipere, A., & Mierina, I. (2017). Exploring Non-Cognitive Predictors of Mathematics Achievement among 9th Grade Students. Learning and Individual Differences, 59, 65-77. http://doi.org/10.1016/j.lindif.2017.09.005

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org

Rabelo, M. L. (2013). Avaliação Educacional: Fundamentos, Metodologia e Aplicações no Contexto Brasileiro [Educational Evaluation: Fundamentals, Methodology and Applications in the Brazilian Context]. Rio de Janeiro, RJ: SBM.

Rokach, L., & Maimon, O. (2015). Data Mining with Decision Trees: Theory and Applications. World Scientific Publishing.

Schwartzman, S., Costin, C., & Coutinho, A. M. J. (2017). Sociologia e Economia da Educação [Sociology and Economy of Education]. Rede Ciência para Educação.

Souza, M. C. R. F., & Fonseca, M. C. R. F. (2010). Relações de Gênero, Educação Matemática e Discurso: Enunciados sobre Mulheres, Homens e Matemática [Gender Relations, Mathematical Education and Discourse: Statements on Women, Men and Mathematics]. Autêntica.

Therneau, T. M., & Atkinson, E. J. (2015). An Introduction to Recursive Partitioning Using the rpart Routines. https://cran.rproject.org/web/packages/rpart/vignettes/longintro.pdf

Thien, L. M., & Ong, M. Y. (2015). Malaysian and Singaporean Students’ Affective Characteristics and Mathematics Performance: Evidence from PISA 2012. Springer Plus, 4, 563. http://doi.org/10.1186/s40064-015-1358-z

Zhang, H., & Singer, B. H. (2010). Recursive Partitioning and Applications. Springer. https://doi.org/10.1007/978-1-4419-6824-1

Published

2021-01-13

How to Cite

Gomes, C. M. A., Fleith, D. de S., Marinho-Araujo, C. M., & Rabelo, M. L. (2021). Predictors of Students’ Mathematics Achievement in Secondary Education. Psicologia: Teoria E Pesquisa, 36. https://doi.org/10.1590/0102.3772e3638

Issue

Section

Estudos Empíricos