Large-scale household rainwater harvesting

supply-demand analysis of the One Million Cisterns Program

Authors

DOI:

https://doi.org/10.18830/1679-09442025v18e52784

Keywords:

Cisterns, Indicators, Semi-arid

Abstract

The assessment of the supply-demand relationship in domestic rainwater harvesting systems has been much discussed. In particular, large-scale implementation programs would benefit from the availability of demand-supply indicators for the standard systems they implement. Such indicators should be simple, and, thus, of straightforward implementation, yet sufficiently informative to express the supply-demand relationship beyond the water balance. Hence, the aim of this work is to propose new indicators suitable for large-scale programs. Four indicators are evaluated: reliability, efficiency, resilience and surplus. The 1 Million Cisterns Program (P1MC) in Paraíba is taken as a case for the application and evaluation of the indicators. The standard P1MC systems were numerically simulated, taking precipitation series for the 194 municipalities where the cisterns were implemented in Paraíba. The results show that reliability and efficiency, for these systems, have equivalent values, making it possible, without loss of information, to use only reliability.

Downloads

Download data is not yet available.

Author Biographies

Gabriela da Luz Lins, Universidade Federal de Campina Grande; Centro de Tecnologia e Recursos Naturais; Programa de Pós-Graduação em Engenharia Civil e Ambiental

Graduated in Civil Engineering from the Federal University of Campina Grande (2021). Currently, she is a Master's student in the Graduate Program in Civil and Environmental Engineering at the Federal University of Campina Grande. She has experience in Civil Engineering, with an emphasis on Water Resources, working mainly on the following topics: semi-arid regions, performance assessment of rural cisterns, groundwater recharge, and alluvial aquifers

Carlos de Oliveira Galvão, Universidade Federal de Campina Grande; Centro de Tecnologia e Recursos Naturais; Programa de Pós-Graduação em Engenharia Civil e Ambiental

Professor at the Graduate Program in Civil and Environmental Engineering at the Federal University of Campina Grande, Bachelor and MSc in Civil Engineering, DSc in Water Resources and Environmental Sanitation.

Rodolfo Luiz Bezerra Nóbrega, University of Bristol; Science and Engineering; School of Geographical Sciences

Holds a degree in Civil Engineering and a master's in Civil and Environmental Engineering from UFCG, as well as a Ph.D. in Mathematics and Natural Sciences from the University of Göttingen, Germany. Has experience in Water Resources, Hydrology, Soil Science, Hydrological and Environmental Modeling, Remote Sensing, and Sanitary Engineering. Currently employed as a professor at the University of Bristol and serves as a visiting researcher at the University of Reading, both institutions in England.

References

ALAMDARI, N. et al. Assessing climate change impacts on the reliability of rainwater harvesting systems. Resources, Conservation and Recycling, v. 132, p. 178-189, 2018.

ASA, Articulação do semiárido. Ações – Programa um milhão de cisternas”. Disponível em: http://www.asabrasil.org.br/acoes/p1mc. Acesso em: 18 ago. 2023.

ASA. Programa Um Milhão de Cisternas. 11 abr. 2015. Folder. Disponível em: https://issuu.com/articulacaosemiarido/docs/folder_p1mc?utm_medium=referral&utm_source=www.asabrasil.org.br. Acesso em: 7 fev. 2024.

BITTERMAN, P. et al. Water security and rainwater harvesting: A conceptual framework and candidate indicators. Applied Geography, v. 76, p. 75-84, 2016.

BRAGA, C. C.; SILVA, B. B. da. Determinação de regiões pluviometricamente homogêneas no Estado da Paraíba. In: Congresso Brasileiro de Meteorologia, 6, Salvador. Sociedade Brasileira de Meteorologia. Anais, 1:200-205, 1990.

BRASIL. Resolução nº 107, de 27 de julho de 2017. Estabelece critérios técnicos e científicos para delimitação do Semiárido Brasileiro e procedimentos para revisão de sua abrangência. Recife, 27 jul. 2017.

BRITO, C. S. et al. Long-term basin-scale comparison of two high-resolution satellite-based remote sensing datasets for assessing rainfall and erosivity in a basin in the Brazilian semiarid region. Theoretical and Applied Climatology, v. 147, n. 3, p. 1049-1064, 2022.

CHEN, Z. et al. Feasibility study on roof rainwater utilization in seven geographical areas of China based on the precipitation data in recent 40 years. Journal of Environmental Engineering Technology, v. 14, n. 1, p. 336-344, 2024.

COHIM, E. O volume único das cisternas rurais é adequado? XX Simpósio Brasileiro de Recursos Hídricos, Bento Gonçalves - RS, p. 1-8, 2013.

COSTA, J. et al. Validação dos dados de precipitação estimados pelo CHIRPS para o Brasil. Revista Brasileira de Climatologia, v. 24, 2019.

FEWKES, A. Modelling the performance of rainwater collection systems: towards a generalised approach. Urban Water, v.1, p.323-333, 1999.

FUNK, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2, 150066, 2015.

GLEASON-ESPÍNDOLA, J. A.; CASIANO-FLORES, C. A.; PACHECO-VEGA, R.; PACHECO-MONTES, M. R. (eds.). International Rainwater Catchment Systems Experiences: Towards Water Security. London, IWA Publishing, 2020.

HASHIMOTO, T.; STEDINGER, J. R.; LOUCKS, D. P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, v. 18, n.1, p. 14–20, 1982.

JESUS, T. B.; KIPERSTOK, A. C.; COHIM, E. B. Life cycle assessment of rainwater harvesting systems for Brazilian semi‐arid households. Water and Environment Journal, v. 34, n. 3, p. 322-330, 2020.

MIC. Cisternas familiares de água para consumo (1ª água) entregues pelo MDS (Acumulado). Brasília - DF, 2023. Disponível em: https://aplicacoes.cidadania.gov.br/vis/data3/data-explorer.php. Acesso em: 13 jul. 2023.

NÓBREGA, R. L. B.; QUEIROZ, M. J. S. ; MAIA, L. F.; GALVÃO, C. O. InfoChuva: uma ferramenta computacional de avaliação de riscos de desabastecimento de sistemas de captação de água de chuva. In: Anais do VI Simpósio Brasileiro de Captação e Manejo de Água de Chuva, 2007.

PACHECO, G. C. R.; ALVES, C. M. A. Impactos dos critérios de dimensionamento de reservatórios no comportamento dos sistemas de aproveitamento de água pluvial. XIV Simpósio Nacional de Sistemas Prediais, Catalão (GO), 2021. https://doi.org/10.46421/sispred.v2i.1096.

PACHECO, G. C. R.; ALVES, C. M. A. The influence of deep uncertainties in the design and performance of residential rainwater harvesting systems. Water Resources Management, v. 37, p. 1499-1517, 2023.

PALLA, A. et al. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resources, Conservation and Recycling, v. 62, p. 71-80, 2012.

QUON, H.; JIANG, S. Decision making for implementing non-traditional water sources: a review of challenges and potential solutions. npj Clean Water, v. 6, n. 1, p. 56, 2023.

ROCHA, M. S. D.; NÓBREGA, R. L. B.; FARIAS, C. A. S. de; GALVÃO, C. de O. Impacto das mudanças climáticas em cisternas rurais do nordeste brasileiro. Revista Eletrônica de Gestão e Tecnologias Ambientais, v. 9, n. 3, p. 5–15, 2022.

SANTOS, S. R. Q.; CUNHA, A. P. M.; RIBEIRO-NETO, G. G.. Avaliação de dados de precipitação para o monitoramento do padrão espaço-temporal da seca no nordeste do Brasil. Revista Brasileira de Climatologia, v. 25, 2019.

SILVA, M. B. M; GALVÃO, C. O.; RIBEIRO, M. M. R. Impacto da variabilidade climática intra e interanual no aproveitamento de água de chuva: um estudo de caso. Paranoá, v. 16, n. 34, p. 1-15, 2023.

SILVA, C. S.; ATHAYDE JÚNIOR, G. B.; ALMEIDA, C. N. Proposal of coefficients for performance analysis of reservoirs for rainwater storage. Journal of Hydrology, v. 636, p. 131288, 2024.

TESTON, A. et al. Modular life cycle assessment approach: Environmental impact of rainwater harvesting systems in urban water systems. Science of The Total Environment, v. 908, p. 168281, 2024.

TOOSI, A. S. et al. Annual and seasonal reliability of urban rainwater harvesting system under climate change. Sustainable Cities and Society, v. 63, p. 102427, 2020.

WANG, J. et al. StRaWHAT: A stochastic rainwater harvesting assessment tool for direct quantification of rainwater harvesting system performance. Journal of Cleaner Production, v. 436, p. 140582, 2024.

YU, W. et al. Modelling seasonal household variation in harvested rainwater availability: a case study in Siaya County, Kenya. npj Clean Water, v. 6, n. 1, p. 32, 2023.

ZORTEA, M.; ANDREOLLI, I.; VARGAS, A. S.; GUADAGNIN, D. L. Simulação numérica do comportamento de sistema coletor de água de chuva residencial: estudo de caso, In: Anais do XV Simpósio Brasileiro de Recursos Hídricos, 2003.

Published

2025-03-07

How to Cite

Lins, G. da L., Galvão, C. de O., & Bezerra Nóbrega, R. L. (2025). Large-scale household rainwater harvesting: supply-demand analysis of the One Million Cisterns Program. Paranoá, 18, e52784. https://doi.org/10.18830/1679-09442025v18e52784

Issue

Section

Technology, Environment and Sustainability

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.