On the Categorical Notion of Proto-topos

Authors

DOI:

https://doi.org/10.26512/rfmc.v6i2.22103

Keywords:

propositional languages, categorical semantics, truth morphisms, proto-topos

Abstract

The aim of this paper is to show how is possible to do semantic for propositional languages in a categorical setting different from topos. I propose the definition of two kinds of categories called categories with truth morphisms (CTM) and proto-topos. In categories with truth morphisms, it can be defined the truth functions that correspond to the logical connectives of negation, conjunction, implication and disjunction. In proto-topos, I show that the truth functions defined in CTM’s satisfy certain desirable properties with respect to the truth values true and false.

Downloads

Download data is not yet available.

Author Biography

Edelcio Gonçalves de Souza, Universidade de São Paulo

Possui graduação, mestrado e doutorado em Filosofia pela Universidade de São Paulo. Fez estágio de pós-doutorado na Stanford University - Center for the Study of Language and Information. Atualmente é professor doutor da Universidade de São Paulo. Tem experiência na área de Filosofia, com ênfase em Lógica, atuando principalmente nos seguintes temas: lógica, lógica abstrata, teoria de modelos para linguagens infinitárias.

References

Artin, M., Grothendieck, A. e Verdier, J. L. (1972). Theorie des topos et cohomologie etale des schemas (SGA 4). Lecture Notes in Mathematics, vol 269.

Awodey, S. (2010). Category theory. Oxford University Press.

Bell, J. L. (2008). Toposes and local set theories: an introduction. Courier Corporation.

Boileau, A. e Joyal, A. (1981). La logique des topos. The Journal of Symbolic Logic, vol 46(1), pp 6-16.

Freyd, P. (1972). Aspects of topoi. Bulletin of the Australian Mathematical Society, vol 7, pp 1-76.

Goldblatt, R. (2006). Topoi: the categorical analysis of logic. Dover Publications, Inc.

Heyting, A. (1966). Intuitionism. 2nd revised edition. North-Holland.

Herrlich, H. e Strecker, G. E. (1973). Category theory. Allyn and Bacon Inc.

Johnstone, P. T. (1977). Topos theory. Academic Press.

Johnstone, P. T. (2002). Sketches of an elephant: A topos theory compendium, 2 vols. Oxford University Press.

Kock, A. e Wraith, G. C. (1971). Elementary toposes. Aarhaus Lecture Note Series, 30.

Lawvere, F. W. (1964). An elementary theory of the category of sets. Proceedings of the national academy of sciences, vol 52(6), pp 1506-1511.

Lawvere, F. W. (1970). Quantiers and sheaves. Actes du congres international des mathematiciens, Nice, vol 1, pp 329-334.

Maclane, S. (1971). Categories for the working mathematician. Springer-Verlag.

Maclane, S. e Moerdijk, I. (2012). Sheaves in geometry and logic: A first introduction to topos theory. Springer-Verlag.

MacLarty, C. (1995). Elementary categories, elementary toposes. Clarendon Press.

Pare, R. (1974) Co-limits in topoi. Bulletin of the American Mathematical Society, vol 80(3), pp 556-561.

Tierney, M. (1972). Sheaf theory and the continuum hypothesis. Toposes, algebraic geometry and logic. Lecture Notes in Mathematics. Springer-Verlag. pp 13-42.

Published

2018-12-28

How to Cite

DE SOUZA, Edelcio Gonçalves. On the Categorical Notion of Proto-topos. Journal of Modern and Contemporary Philosophy, [S. l.], v. 6, n. 2, p. 105–114, 2018. DOI: 10.26512/rfmc.v6i2.22103. Disponível em: https://periodicos.unb.br/index.php/fmc/article/view/22103. Acesso em: 25 nov. 2024.