Vector-borne diseases in Brazil: climate change and future warming scenarios

Autores

  • Bruno Moreira de Carvalho Instituto de Saúde Global de Barcelona, Barcelona, Espanha
  • Leticia Palazzi Perez Universidade Federal da Paraíba, João Pessoa, PB, Brasil
  • Beatriz Fatima Alves de Oliveira Fundação Oswaldo Cruz Piauí, Teresina, PI, Brasil
  • Ludmilla da Silva Viana Jacobson Universidade Federal Fluminense, Niterói, RJ, Brasil
  • Marco Aurélio Horta Instituto Oswaldo Cruz Fiocruz, Rio de Janeiro, RJ, Brasil
  • Andrea Sobral Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brasil
  • Sandra de Souza Hacon Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brasil

DOI:

https://doi.org/10.18472/SustDeb.v11n3.2020.33985

Resumo

Climate change affects human health either directly or indirectly, and related impacts are complex, non-linear, and depend on several variables. The various climate change impacts on health include a change in the spatial distribution of vector-borne diseases. In this regard, this study presents and discusses changes in the spatial distribution of climate suitability for visceral leishmaniasis, yellow fever and malaria in Brazil, in different global warming scenarios. Maximum entropy (MaxEnt) was used to construct climate suitability models in warming scenarios. Models were based in climate variables generated by the Eta-HadGEM2 ES regional model, in the baseline period 1965-2005 and RCP8.5 scenario, representing global warming levels of 1,5ºC (2011-2040), 2,0ºC (2041-2070) and 4,0ºC (2071-2099). The three diseases studied are largely influenced by climate and showed different distribution patterns within the country. In global warming scenarios, visceral leishmaniasis found more favorable climate conditions in the Southeastern and Southern regions of Brazil, while climate in the Northern and Center-West regions gradually became more favorable to yellow fever. In malaria scenarios, an increase in favorable climate conditions to its high incidence was observed in the Atlantic Forest, where currently extra-Amazonian cases occur. The scenarios presented herein represent different possible consequences for the health sector in terms of adopting (or not) different measures to mitigate climate change in Brazil, such as reducing the emission of greenhouse gases.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Bruno Moreira de Carvalho, Instituto de Saúde Global de Barcelona, Barcelona, Espanha

Doutor em Ecologia e Evolução pela Universidade do Estado do Rio de Janeiro (2016), com estágio de doutorado sanduíche na London School of Hygiene and Tropical Medicine, University of London, Inglaterra (2015). Mestre em Biologia Parasitária pelo Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (2011). Graduação em Ciências Biológicas pela Universidade Estácio de Sá nas habilitações Bacharelado (2008) e Licenciatura (2006). Entomologista especializado em mapeamentos da distribuição potencial de vetores de doenças em cenários de mudanças climáticas através de modelagem de nicho ecológico. Foi pós-doc no Laboratório Interdisciplinar de Vigilância Entomológica em Diptera e Hemiptera, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz.Atualmente é Postdoctoral Fellow no Instituto de Salud Global de Barcelona (ISGlobal, Espanha). Principais trabalhos incluem os tópicos: ecologia de doenças, biogeografia, mudanças climáticas, modelagem matemática, análise espacial, biologia e taxonomia de flebotomíneos, eco-epidemiologia das leishmanioses.

Leticia Palazzi Perez, Universidade Federal da Paraíba, João Pessoa, PB, Brasil

Universidade Federal da Paraíba, João Pessoa, PB, Brasil

Beatriz Fatima Alves de Oliveira, Fundação Oswaldo Cruz Piauí, Teresina, PI, Brasil

Possui graduação em Bacharelado Em Enfermagem pela Universidade do Estado de Mato Grosso (2007), mestrado em Saúde Pública e Meio Ambiente pela Fundação Oswaldo Cruz (2011) e doutorado em Programa de Saúde Pública e Meio Ambiente pela Fundação Oswaldo Cruz/Escola Nacional de Saúde Pública (2015). Atualmente é colaboradora da Fundação Oswaldo Cruz/Escola Nacional de Saúde Pública e pesquisadora em saúde pública da Fundação Oswaldo Cruz Piauí. É pesquisadora colaboradora de projetos com ênfase na exposição a agentes químicos, físicos e biológicos e efeitos associados na saúde humana e animal, especialmente em efeitos na saúde infantil relacionados à poluição atmosférica e mercúrio. Possui experiência na área de saúde coletiva, com ênfase em vigilância epidemiológica e ambiental e avaliação de risco a saúde humana.

Ludmilla da Silva Viana Jacobson, Universidade Federal Fluminense, Niterói, RJ, Brasil

Possui graduação em Estatística pela Universidade do Estado do Rio de Janeiro (2004), mestrado em Estudos Populacionais e Pesquisas Sociais (área de concentração: Estatística Social) pela Escola Nacional de Ciências Estatísticas (2007) e doutorado em Saúde Coletiva (área de concentração: Epidemiologia) pela Universidade do Estado do Rio de Janeiro (2013). Atualmente é professora adjunta do Departamento de Estatística da Universidade Federal Fluminense. Tem experiência na área de Probabilidade e Estatística, com ênfase em Saúde Coletiva

Marco Aurélio Horta, Instituto Oswaldo Cruz Fiocruz, Rio de Janeiro, RJ, Brasil

Doutor em Saúde Pública e Meio Ambiente pela Escola Nacional de Saúde Pública da Fundação Oswaldo Cruz (Fiocruz) e pesquisador em saúde pública do Instituto Oswaldo Cruz. Atua nas áreas da epidemiologia e vigilância epidemiológica de doenças emergentes e reemergentes, saúde global e efeito das mudanças climáticas na saúde das populações. Trabalhou como consultor técnico do Ministério da Saúde para as doenças imunopreviníveis. Foi assessor da presidência da Fiocruz entre 2013 e 2017 para a rede de vigilância epidemiológica e coordenador dos Laboratórios de Referência do SUS. Coordenou as ações para vigilância laboratorial para os jogos olímpicos Rio 2016. É professor nas disciplinas de estatística aplicada à saúde no Programa de Pós-graduação em Medicina Tropical. Coordena a plataforma de extração/detecção Biomanguinhos/IOC para a emergência do Covid-19. É atualmente coordenador da Plataforma de Nível de Biossegurança 3 (NB3) do Instituto Oswaldo Cruz da Fiocruz.

Andrea Sobral, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brasil

Possui graduação em Ciências Biológicas (1992), mestrado em Saúde Coletiva (2007) pelo Instituto de Estudo em Saúde Coletiva/UFRJ e doutorado em Saúde Coletiva pelo Instituto de Medicina Social/UERJ (2011). Completou o estágio de Pós-doutoramento pelo Instituto de Medicina Social/UERJ (2011-2013) e pelo Departamento de Endemias Samuel Pessoa/Escola Nacional de Saúde Pública/FIOCRUZ (2014). É Pesquisadora em Saúde Pública do Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública, Fiocruz e foi coordenadora de ensino do departamento (12/2015-06/2019). Desde 2016 é docente permanente do Programa de Pós-Graduação em Saúde Pública e Meio Ambiente. Coordena o Programa de Pós-Graduação Stricto Sensu em Saúde Pública e Meio Ambiente da ENSP/Fiocruz (2019). É líder do grupo de pesquisa de Epidemiologia Espacial certificado pelo CNPq. Bolsista de Produtividade do CNPq 2 (03/2019 a 02/2022). Possui experiência na área de Saúde Coletiva, com ênfase em epidemiologia, em análise de processos endêmico-epidêmicos e em epidemiologia espacial, geoprocessamento, sensoriamento remoto, gestão ambiental e saúde e modelagem em saúde. Suas linhas de pesquisa abordam sobre os seguintes temas: epidemiologia e controle da leishmaniose visceral e das arboviroses (dengue, Zika, chikungunya e febre amarela), epidemiologia das doenças transmissíveis, monitoramento de tendência e controle de doenças endêmicas, emergentes e re-emergentes, determinação e controle de endemias, análise de dados espaciais, bioestatística, sensoriamento remoto, gestão ambiental e saúde e modelagem estatística, matemática e computacional aplicadas à saúde.

Sandra de Souza Hacon, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brasil

Graduação em Ciências Biológicas pela Universidade Federal do Rio de Janeiro (1974), mestrado em Controle da Poluição Ambiental - Mancherter University, Reino Unido (1981) e doutorado em Geociências (Geoquímica Ambiental) pela Universidade Federal Fluminense (1996). Está lotada na Escola Nacional de Saúde Pública da Fundação Oswaldo Cruz, integrante dos programas de pós-graduação de mestrado de doutorado em Ciências Ambientais da Universidade estadual de Mato Grosso e da Escola Nacional de Saúde Pùblica da Fiocruz. Atua na área de Avaliação de Risco à Saúde Humana, Ecotoxicologia, Gestão Integrada de Saúde e Ambiente e Avaliação de Impactos à Saúde das Mudanças Climáticas e de Grandes Empreendimentos. Coordena vários projetos de pesquisa financiados pelo CNPq, FAPERJ, FINEP, CAPES, setor privado, atua como pesquisadora em projetos interdisciplinares com a UNEMAT, INPE, UNB, USP, UFRN, USP, PUC/RJ, UFCE, FIOCRUZ, projetos internacionais com a Universidade de Exeter no Reino Unido, Instituto Tropical de Epidemiologia e Sáude Pública de Basel e a Universidade de Basel na Suiça. Na área acadêmica responsável por disciplinas nos cursos de pós-graduação da ENSP/FIOCRUZ, orientadora de mestrado e doutorado nos cursos de pós-graduação de Saúde Pública e Meio Ambiente da ENSP/FIOCRUZ e do Programa de CIências Ambientais da Universidade estadual de Mato Grosso ( UNEMAT). Representante do Brasil no GT do Programa das Nações Unidas para o Meio Ambiente referente ao Programa de Monitoramento da Implementação da Convenção de Stockholm por indicação do Ministério do Meio Ambiente. Integrante da parceria Fiocruz- Opas/OMS do Centro Colaborador em Saúde Pública e Ambiental da Organização Pan-Americana da Saúde / Organização Mundial da Saúde (Opas/OMS)

Referências

ALKISHE, A. et al. Recognizing sources of uncertainty in disease vector ecological niche models: an example with the tick Rhipicephalus sanguineus sensu lato. Perspectives in Ecology and Conservation, v. 18, n. 2, p. 91”“102, 1 abr. 2020.

ALLOUCHE, O.; TSOAR, A.; KADMON, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, v. 43, n. 6, p. 1223”“1232, 2006.

ALMEIDA, M. A. B. DE. et al. Predicting Yellow Fever Through Species Distribution Modeling of Virus, Vector, and Monkeys. EcoHealth, v. 16, n. 1, p. 95”“108, 1 mar. 2019.

ALTO, B. W.; JULIANO, S. A. Precipitation and Temperature Effects on Populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of Medical Entomology, v. 38, n. 5, p. 646”“656, 1 set. 2001.

ALVAR, J. et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLOS ONE, v. 7, n. 5, p. e35671, 31 maio 2012.

ARBOLEDA, S.; JARAMILLO-O., N.; PETERSON, A. T. Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia. International Journal of Environmental Research and Public Health, v. 6, n. 12, p. 3040”“3055, dez. 2009.

ARTUN, O. Ecological niche modeling for the prediction of cutaneous leishmaniasis epidemiology in current and projected future in Adana, Turkey. Journal of Vector Borne Diseases, v. 56, n. 2, p. 127, 4 jan. 2019.

AZEVEDO, T. S. DE. et al. Kerteszia cruzii and extra-Amazonian malaria in Brazil: Challenges due to climate change in the Atlantic Forest. Infection, Genetics and Evolution, v. 85, p. 104456, 1 nov. 2020.

BABAIE, J. et al. A systematic evidence review of the effect of climate change on malaria in Iran. Journal of Parasitic Diseases, v. 42, n. 3, p. 331”“340, 1 set. 2018.

BARCELLOS, C. et al. Mudanças climáticas e ambientais e as doenças infecciosas: cenários e incertezas para o Brasil. Epidemiologia e Serviços de Saúde, v. 18, n. 3, p. 285”“304, set. 2009.

BARROS, M. M. A.; GONÇALVES, K. DOS S.; HACON, S. DE S. Reinternações hospitalares por doenças respiratórias em menores de 12 anos e as queimadas em Porto Velho ”“ RO, na Amazônia Ocidental. InterfacEHS ”“ Revista de Saúde, Meio Ambiente e Sustentabilidade, v. 8, n. 3, 2014.

BENEDICT, M. Q. et al. Spread of the Tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne and Zoonotic Diseases, v. 7, n. 1, p. 76”“85, 1 mar. 2007.

BENNETT, H. et al. Health and equity impacts of climate change in Aotearoa ”“ New Zealand, and health gains from climate action. New Zealand Medical Journal, v. 127, n. 1406, p. 16, 2014.

BESERRA, E. B. et al. Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Diptera, Culicidae). Iheringia. Série Zoologia, v. 99, n. 2, p. 142”“148, jun. 2009.

BRASIL. Manual de Vigilância e Controle da Leishmaniose Visceral. Brasília, DF: Editora MS, 2014.

BRASIL. Sistema de Informação de Agravos de Notificação ”“ Sinan. Epidemiológicas e Morbidade ”“ Datasus. Disponível em: <http://datasus1.saude.gov.br/informacoes-de-saude/tabnet/epidemiologicas-e-morbidade>. Acesso em: 10 jan. 2020.

BRASIL. Boletim epidemiológico da Febre Amarela no Brasil 2019/2020. Rede Internacional de Educação de Técnicos em Saúde ”“ Rets. Disponível em: <http://www.rets.epsjv.fiocruz.br/biblioteca/boletim-epidemiologico-da-febre-amarela-no-brasil-20192020>. Acesso em: 6 set. 2020.

BRASIL. Malária, Sistema de Informação de Vigilância Epidemiológica ”“ Sivep. Disponível em: <http://portalweb04.saude.gov.br/sivep_malaria/>. Acesso em: 10 jan. 2020.

BRASIL. Ministério da Saúde. Vigilância em saúde no Brasil 2003|2019: da criação da Secretaria de Vigilância em Saúde aos dias atuais. Boletim Epidemiológico. Disponível em: <http://www.saude.gov.br/ boletins-epidemiologicos>. Acesso em: 10 nov. 2020.

CAMINADE, C. et al. Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences, v. 111, n. 9, p. 3286”“3291, 4 mar. 2014.

CAMPOS, G. S.; BANDEIRA, A. C.; SARDI, S. I. Zika Virus Outbreak, Bahia, Brazil. Emerging Infectious Diseases, v. 21, n. 10, p. 1885”“1886, out. 2015.

CARDOSO-LEITE, R. et al. Recent and future environmental suitability to dengue fever in Brazil using species distribution model. Transactions of The Royal Society of Tropical Medicine and Hygiene, v. 108, n. 2, p. 99”“104, 1 fev. 2014.

CARVALHO, B. M. et al. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change. PLOS ONE, v. 10, n. 11, p. e0143282, 30 nov. 2015.

CARVALHO, B. M.; RANGEL, E. F.; VALE, M. M. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bulletin of Entomological Research, v. 107, n. 4, p. 419”“430, ago. 2017.

CARVALHO, M. S.; SOUZA-SANTOS, R. Análise de dados espaciais em saúde pública: métodos, problemas e perspectivas. Cadernos de Saúde Pública, v. 21, p. 361”“378, abr. 2005.

CASTRO, M. C.; WILSON, M. E.; BLOOM, D. E. Disease and economic burdens of dengue. The Lancet Infectious Diseases, v. 17, n. 3, p. e70”“e78, 1 mar. 2017.

CELLA, W. et al. Do climate changes alter the distribution and transmission of malaria? Evidence assessment and recommendations for future studies. Revista da Sociedade Brasileira de Medicina Tropical, v. 52, p. e20190308, 2019.

CHOU, S. C. et al. Evaluation of the Eta Simulations Nested in Three Global Climate Models. American Journal of Climate Change, v. 03, n. 05, p. 438, 25 dez. 2014.

COSTA, S. M. DA; CORDEIRO, J. L. P.; RANGEL, E. F. Environmental suitability for Lutzomyia (Nyssomyia) whitmani (Diptera: Psychodidae: Phlebotominae) and the occurrence of American cutaneous leishmaniasis in Brazil. Parasites & Vectors, v. 11, n. 1, p. 155, 7 mar. 2018.

ELITH, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, v. 17, n. 1, p. 43”“57, 2011.

FERNANDES, N. C. C. DE A. et al. Outbreak of Yellow Fever among Nonhuman Primates, Espírito Santo, Brazil, 2017. Emerging Infectious Diseases, v. 23, n. 12, p. 2038”“2041, dez. 2017.

FICK, S. E.; HIJMANS, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, v. 37, n. 12, p. 4302”“4315, 2017.

FOURNET, F. et al. Effective surveillance systems for vector-borne diseases in urban settings and translation of the data into action: a scoping review. Infectious Diseases of Poverty, v. 7, n. 1, p. 99, 3 set. 2018.

GASPARRINI, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet, v. 386, n. 9.991, p. 369”“375, 25 jul. 2015.

GRACIE, R. et al. Geographical Scale Effects on the Analysis of Leptospirosis Determinants. International Journal of Environmental Research and Public Health, v. 11, n. 10, p. 10366”“10383, out. 2014.

GUISAN, A.; ZIMMERMANN, N. E. Predictive habitat distribution models in ecology. Ecological Modelling, v. 135, n. 2, p. 147”“186, 5 dez. 2000.

GURGEL-GONÇALVES, R. et al. Geographic Distribution of Chagas Disease Vectors in Brazil Based on Ecological Niche Modeling. Research Article. Disponível em: <https://www.hindawi.com/journals/jtm/2012/705326/>. Acesso em: 11 nov. 2020.

HACON, S. DE S. et al. Challenges and Prospects for Integrating the Assessment of Health Impacts in the Licensing Process of Large Capital Project in Brazil. International Journal of Health Policy and Management, v. 7, n. 10, p. 885”“888, 30 jun. 2018.

HIJMANS, R. J. et al. Dismo Species Distribution Modeling. [s.l: s.n.]. 2015.

HLAVACOVA, J.; VOTYPKA, J.; VOLF, P. The Effect of Temperature on Leishmania (Kinetoplastida: Trypanosomatidae) Development in Sand Flies. Journal of Medical Entomology, v. 50, n. 5, p. 955”“958, 1 set. 2013.

HORTA, M. A. et al. Temporal relationship between environmental factors and the occurrence of dengue fever. International Journal of Environmental Health Research, v. 24, n. 5, p. 471”“481, 3 set. 2014.

IPCC (ED.). Climate change 2014: mitigation of climate change. Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press, 2014.

IPCC. Summary for Policymakers: Global Warming of 1.5oC. Geneva: IPCC, 2018.

KINGSLEY, S. L. et al. Current and Projected Heat-Related Morbidity and Mortality in Rhode Island. Environmental Health Perspectives, v. 124, n. 4, p. 460”“467, 1 abr. 2016.

KOVATS, R. S. et al. Early effects of climate change: do they include changes in vector-borne disease? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, v. 356, n. 1.411, p. 1057”“1068, 29 jul. 2001.

LAMBRECHTS, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proceedings of the National Academy of Sciences, v. 108, n. 18, p. 7460”“7465, 3 maio 2011.

LAPOLA, D. M. et al. Pervasive transition of the Brazilian land-use system. Nature Climate Change, v. 4, n. 1, p. 27”“35, jan. 2014.

LAPOLA, D. M. et al. Limiting the high impacts of Amazon forest dieback with no-regrets science and policy action. Proceedings of the National Academy of Sciences, v. 115, n. 46, p. 11671”“11679, 13 nov. 2018.

LAPORTA, G. Z. et al. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil. Memórias do Instituto Oswaldo Cruz, v. 106, p. 239”“245, ago. 2011.

LAPORTA, G. Z. et al. Malaria vectors in South America: current and future scenarios. Parasites & Vectors, v. 8, n. 1, p. 426, 19 ago. 2015.

LIPPI, C. A. et al. Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: implications of climate change for public health vector control. PLOS Neglected Tropical Diseases, v. 13, n. 4, p. e0007322, 17 abr. 2019.

LOVEJOY, T. E.; NOBRE, C. Amazon Tipping Point. Science Advances, v. 4, n. 2, p. eaat2340, 1 fev. 2018.

MARICATO, E. Informalidade Urbana no Brasil: a lógica da cidade fraturada. In: WANDERLEY, L. E.; RAICHELIS, R. (Ed.). A cidade de São Paulo, relações internacionais e gestão pública. São Paulo: Educ, 2009. p. 296.

MATSUEDA, M. Predictability of Euro-Russian blocking in summer of 2010. Geophysical Research Letters, v. 38, n. 6, 2011.

MENDES, C. S. et al. Impacto das mudanças climáticas sobre a leishmaniose no Brasil. Ciência & Saúde Coletiva, v. 21, n. 1, p. 263”“272, jan. 2016.

MESSINA, J. P. et al. The current and future global distribution and population at risk of dengue. Nature Microbiology, v. 4, n. 9, p. 1508”“1515, set. 2019.

MILLS, J. N.; GAGE, K. L.; KHAN, A. S. Potential Influence of Climate Change on Vector-Borne and Zoonotic Diseases: a review and proposed research plan. Environmental Health Perspectives, v. 118, n. 11, p. 1507”“1514, 1 nov. 2010.

MOO-LLANES, D. A. Nicho ecológico actual y futuro de la Leishmaniasis (Kinetoplastida: Trypanosomatidae) en la región Neotropical. Revista de Biología Tropical, v. 64, n. 3, 1 jul. 2016.

MOSS, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature, v. 463, n. 7.282, p. 747”“756, fev. 2010.

NAIMI, B. et al. Where is positional uncertainty a problem for species distribution modelling? Ecography, v. 37, n. 2, p. 191”“203, 2014.

NIETO, P.; MALONE, J. B.; BAVIA, M. E. Ecological niche modeling for visceral leishmaniasis in the state of Bahia, Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. Geospatial health, v. 1, n. 1, p. 115”“126, nov. 2006.

OLIVEIRA-FERREIRA, J. et al. Malaria in Brazil: an overview. Malaria Journal, v. 9, n. 1, p. 115, 30 abr. 2010.

PARHAM, P. E.; MICHAEL, E. Modeling the Effects of Weather and Climate Change on Malaria Transmission. Environmental Health Perspectives, v. 118, n. 5, p. 620”“626, 1 maio 2010.

PETERSON, A. Ecologic Niche Modeling and Spatial Patterns of Disease Transmission. Emerging Infectious Diseases, v. 12, n. 12, p. 1822”“1826, 2006.

PETERSON, A. T. et al. Ecological Niches and Geographic Distributions. Princeton, N.J.: [s.n.].

PETERSON, A. T. et al. Influences of climate change on the potential distribution of Lutzomyia longipalpis sensu lato (Psychodidae: Phlebotominae). International Journal for Parasitology, v. 47, n. 10, p. 667”“674, 1 set. 2017.

PETERSON, A. T.; SOBERÓN, J. Species Distribution Modeling and Ecological Niche Modeling: getting the concepts right. Natureza & Conservação, v. 10, n. 2, p. 102”“107, 2012.

PHILLIPS, S. J.; ANDERSON, R. P.; SCHAPIRE, R. E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, v. 190, n. 3, p. 231”“259, 25 jan. 2006.

POSSAS, C. et al. Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for immunisation. Memórias do Instituto Oswaldo Cruz, v. 113, n. 10, 3 set. 2018.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: <https://www.r-project.org/>. Acesso em: 7 jun. 2008.

RANDIN, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, v. 239, p. 111626, mar. 2020.

RANGEL, E. F. et al. Eco-Epidemiology of American Visceral Leishmaniasis with Particular Reference to Brazil. In: RANGEL, E. F.; SHAW, J. J. (Ed.). Brazilian Sand Flies. Cham: Springer International Publishing, 2018. p. 381”“416.

READY, P. D. Leishmaniasis emergence and climate change. Revue Scientifique et Technique (International Office of Epizootics), v. 27, n. 2, p. 399”“412, 1 ago. 2008.

RIVAS, G. B. et al. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae). Parasites & Vectors, v. 7, n. 1, p. 278, 19 jun. 2014.

ROBINE, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies. Dossier: nouveautés en cancérogenèse / New developments in carcinogenesis. v. 331, n. 2, p. 171”“178, 1 fev. 2008.

RUFINO, R. et al. Surtos de diarreia na Região Nordeste do Brasil em 2013, segundo a mídia e sistemas de informação de saúde ”“ Vigilância de situações climáticas de risco e emergências em saúde. Ciência & Saúde Coletiva, v. 21, p. 777”“788, mar. 2016.

SALOMÓN, O. D. et al. Lutzomyia longipalpis urbanisation and control. Memórias do Instituto Oswaldo Cruz, v. 110, n. 7, p. 831”“846, nov. 2015.

VALDEZ, L. D.; SIBONA, G. J.; CONDAT, C. A. Impact of rainfall on Aedes aegypti populations. Ecological Modelling, v. 385, p. 96”“105, 10 out. 2018.

VAN VUUREN, D. P. et al. The representative concentration pathways: an overview. Climatic Change, v. 109, n. 1, p. 5, 5 ago. 2011.

VASCONCELOS, P. F. DA C. Yellow fever. Revista da Sociedade Brasileira de Medicina Tropical, v. 36, n. 2, p. 275”“293, abr. 2003.

VASCONCELOS, V. V.; PINHO, C. M. DE D. Multivariate Geovisualization of Dengue, Zika and Chikungunya cases in Brazil: a didactic experience. Hygeia ”“ Revista Brasileira de Geografia Médica e da Saúde, v. 13, n. 25, p. 91”“106, 28 set. 2017.

WORLD HEALTH ORGANIZATION. World Malaria Report 2019. [S.l.]: World Health Organization, 2019.

YÉ, Y. et al. Effect of meteorological factors on clinical malaria risk among children: an assessment using village-based meteorological stations and community-based parasitological survey. BMC Public Health, v. 7, n. 1, p. 101, 8 jun. 2007.

ZANLUCA, C. et al. First report of autochthonous transmission of Zika virus in Brazil. Memórias do Instituto Oswaldo Cruz, v. 110, n. 4, p. 569”“572, jun. 2015.

Publicado

2020-12-31

Como Citar

Carvalho, B. M. de, Perez, L. P., Oliveira, B. F. A. de ., Jacobson, L. da S. V. ., Horta, M. A. ., Sobral, A., & Hacon, S. de S. (2020). Vector-borne diseases in Brazil: climate change and future warming scenarios. Sustainability in Debate, 11(3), 361–404. https://doi.org/10.18472/SustDeb.v11n3.2020.33985