Assessment of photovoltaic generation, supply, and sustainability: a case study of municipalities in São Paulo state
DOI:
https://doi.org/10.18472/SustDeb.v12n2.2021.37015Keywords:
Sustainable energy. Photovoltaic generation. Sustainability. Distributed generation. Modelling.Abstract
Energy consumption has been increasing together with population growth and the consequences for energy production widely generate discussions under the aspect of environmental outcome and supply reliability and quality. This paper proposes a methodology that allows the estimation of the potential for cities to be more independent in terms of centralized generation and distribution of electricity considering photovoltaic sources. Sustainability and environmental performance are also discussed. The methodology aims to assess some municipalities in the São Paulo state. The results showed high potential for photovoltaic supply in those municipalities under the considered conditions indicating the possibility for structuring a decentralized generation model where cities would be more independent in electricity supply. Implementing the required photovoltaic systems would return the energy consumed during their life cycle in a relatively short period compared to their expected lifetime.
Downloads
References
ARENALES, S.; DAREZZO, A. Cálculo Numérico: aprendizagem com apoio de software. 2. ed. São Paulo: Cengage Learning, 2017. ISBN 978-85-221-1287-6.
ASSOULINE, D.; MOHAJERI, N.; SCARTEZZINI, J. Quantifying rooftop photovoltaic solar energy potential: a machine learning approach. Solar Energy, v. 141, p. 278-296, 2017.
BANCO DE INFORMAÇÕES DE GERAÇÃO. Agência Nacional de Energia Elétrica – Aneel. Available at: http://www2.aneel.gov.br. Accessed on: set. 2019.
BRASIL. Balanço energético nacional 2019: ano-base 2018. Rio de Janeiro: Empresa de Pesquisa Energética – EPE, 2019.
CPFL. Caracterização da Carga da CPFL Paulista. Available at: http://www.consultaesic.cgu.gov.br/busca/dados/Lists/Pedido/Attachments/564587/RESPOSTA_PEDIDO_Relatrio%20de%20Caracterizao%20da%20Carga%20-%20PAULISTA.pdf. Accessed on: maio, 2020.
CRECESB. Centro de Referência para as Energias Solar e Eólica Sérgio de S. Brito. Ministério de Minas e Energia – MME. Available at: http://www.cresesb.cepel.br/index.php?section=sundata. Accessed on: jan. 2020.
D’ADAMO, I. The profitability of residential photovoltaic systems. A new scheme of subsidies based on the price of CO2 in a developed PV market. Social Sciences,
v. 7, n. 148, p. 21, 2018.
FONSECA, J. A.; SCHLUETER, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, v. 142, p. 247-265, 2015.
FRISCHKNECHT, R. et al. Methodology guidelines on life cycle assessment of photovoltaic electricity. 3. ed. [S.l.], 2016. Report.
GOLDEMBERG, J. Energia e sustentabilidade: revista de cultura e extensão, 2015.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Available at: https://cidades.ibge.gov.br/. Accessed on: set. 2019.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. DGC/Coordenação de Geografia, DGC/Coordenação de Cartografia. Available at: https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15789-areas-urbanizadas.html?=&t=downloads. Accessed on: jul. 2020.
INSTITUTO NACIONAL DE METEOROLOGIA. Estações meteorológicas de observação de superfície automática. Instituto Nacional de Meteorologia. Ministério da Agricultura, Pecuária e Abastecimento. Available at: http://www.inmet.gov.br/. Accessed on: ago. 2019.
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Sistema de organização nacional de dados ambientais. Estações de medição de dados ambientais. Instituto Nacional de Pesquisas Espaciais. Available at: http://sonda.ccst.inpe.br/index.html. Accessed on: ago. 2019.
INTERNATIONAL ENERGY AGENCY. Energy Demand: Global Energy and CO2 Status Report 2018. Paris: International Energy Agency – IEA, 2018.
KALOGIROU, S. A. Solar Energy Engineering: processes and systems. 2. ed. [S.l.]: Elsevier, 2014. ISBN 978-0-12-397270-5.
LIMA, G. C. d.; TOLEDO, A. L. L.; BOURIKAS, L. The role of national energy policies and life cycle emissions of pv systems in reducing global net emissions of greenhouse gases. Energies, v. 14, n. 4, 2021. ISSN 1996–1073. Available at:
https://www.mdpi.com/1996-1073/14/4/961. Acessed on: sep. 2020.
LUKAC, N. et al. Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data. Energy,
v. 107, p. 854-865, 2016.
MARTíN, A. M.; DOMíNGUEZ, J.; AMADOR, J. Applying lidar datasets and GIS based model to evaluate solar potential over roofs: a review. AIMS Energy, v. 3, n. 3, p. 326-343, 2015.
MATLAB. Version 7.10.0 (R2010a), Natick, Massachusetts: The MathWorks Inc. 2010.
NERO, M. A. et al. Case study of a model of local solar radiation potential and discussion on the associated sustainable applications and potentials. Sustainability in Debate, v. 11, n. 2, p. 173-189, 2020.
ONAT, N.; BAYAR, H. The sustainability indicators of power production systems. Renewable and Sustainable Energy Reviews, v. 14, p. 3108-3115, 2010.
PENG, J.; LU, L.; YANG, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, v. 19, p. 255-274, 2013.
PEREIRA, E. B. et al. Atlas brasileiro de energia solar. São José dos Campos: Instituto Nacional de Pesquisas Espaciais (Inpe), 2017. ISBN 978-85-17-00089-8.
REN21. Renewables 2018 – Global Status Report. 2019.
SANTOS, T. et al. Applications of solar mapping in the urban environment. Applied Geography, v. 51, p. 48-57, 2014.
SANTOYO-CASTELAZO, E.; AZAPAGIC, A. Sustainability assessment of energy systems: integrating environmental, economic and social aspects. Journal of Cleaner Production, v. 80, p. 119-138, 2014.
SÃO PAULO (estado). Anuário de energéticos por município no estado de São Paulo – 2018. Ano-base 2017. São Paulo: Secretaria de Energia e Mineração, 2018.
STEWART, J. Cálculo. 7. ed. São Paulo: Cengage Learning, 2015. ISBN 978-85-221-1259-3.
SUN, Y. et al. GIS-based approach for potential analysis of solar pv generation at the regional scale: a case study of Fujian province. Energy Policy, v. 58, p. 248-259, 2013.
TOLMASQUIM, M. T. Energia Renovável: hidráulica, biomassa, eólica, solar, oceânica. Rio de Janeiro: Empresa de Pesquisa Energética (EPE), 2016. ISBN 978-85-60025-06-0.
WILD-SCHOLTEN, M. J. Energy payback time and carbon footprint of commercial photovoltaic systems. Solar EnergyMaterials & SolarCells, v. 119, p. 296-305, 2013.
WINTERLE, P. Vetores e geometria analítica. 2. ed. São Paulo: Pearson Education do Brasil, 2014. ISBN 978-85-430-0239-2.
WU, P. et al. Review on life cycle assessment of energy payback of solar photovoltaic systems and a case study. Energy Procedia, v. 105, p. 68-74, 2017.
YUE, D.; YOU, F.; DARLING, S. B. Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: life cycle energy and environmental comparative analysis. Solar Energy, v. 106, p. 669-678, 2014.
Downloads
Published
Versions
- 2021-09-08 (2)
- 2021-08-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 Sustainability in Debate
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
SUSTAINABILITY IN DEBATE – Copyright Statement
The submission of original scientific work(s) by the authors, as the copyright holders of the text(s) sent to the journal, under the terms of Law 9.610/98, implies in the concession of copyrights of printed and/or digital publication to the Sustainability in Debate Journal of the article(s) approved for publication purposes, in a single issue of the journal. Furthermore, approved scientific work(s) will be released without any charge, or any kind of copyright reimbursement, through the journal’s website, for reading, printing and/or downloading of the text file, from the date of acceptance for publication purposes. Therefore, the authors, when submitting the article (s) to the journal, and gratuitous assignment of copyrights related to the submitted scientific work, are fully aware that they will not be remunerated for the publication of the article(s) in the journal.
The Sustainability in Debate Journal is licensed under Creative Commons License – Non-Commercial-No-Derivation Attribution (Derivative Work Ban) 3.0 Brazil, aiming at dissemination of scientific knowledge, as indicated on the journal's website, which allows the text to be shared, and be recognized in regards to its authorship and original publication in this journal.
Authors are allowed to sign additional contracts separately, for non-exclusive distribution of the works published in the Sustainability in Debate Journal (for example, in a book chapter), provided that it is expressed the texts were originally published in this journal. Authors are allowed and encouraged to publish and distribute their text online, following publication in Sustainability in Debate (e.g. in institutional repositories or their personal pages). The authors expressly agree to the terms of this Copyright Statement, which will be applied following the submission and publishing by this journal.