Sugarcane bagasse reinforced composite material in the creation of eco-friendly jewellery
DOI:
https://doi.org/10.18472/SustDeb.v15n2.2024.54464Keywords:
Sustainability , Sugar cane, MDF, Composite, Eco-jewelleryAbstract
There is currently a lot of discussion about the environmental impacts of the fashion industry. The designer, as a transformative agent in this process, has the responsibility to incorporate sustainable production methods and products to minimise such impacts. It is in the context of sustainability that has emerged MDF (Medium Density Fiberboard), low-cost ecological panels with different applications, including usage in fashion accessories. However, MDF is responsible for releasing formaldehyde into the atmosphere, causing risks to life on the planet. Therefore, this research aims at the development of composite material to replace it, so we used sugarcane bagasse in the fabrication of eco-friendly jewellery. Methodologically, bibliographical research was conducted, followed by hypotheticaldeductive experimental research. Furthermore, laboratory tests were carried out, such as absorption tests by immersion of liquids, swelling in thickness and impact. Finally, the results were analysed, proving sugarcane bagasse's viability in producing eco-friendly jewellery.
Downloads
References
AHMADIJOKANI, F.; SHOJAEI, A.; DORDANIHAGHIGHI, S.; JAFARPOUR, E.; MOHAMMADI, S.; ARJMAND, M. Effects of hybrid carbon-aramid fibre on performance of non-asbestos organic brake friction composites. Wear, 452, 203280, 2020.
ALBUQUERQUE, S. F. Barriers to sustainability in clothing manufacturing and fashion culture. 2022. Thesis (Doctorate) – Federal University of Piauí. Available at: https://sigaa.ufpi.br/sigaa/public/programa/defesas.jsf?lc=lc=lc=pt_BR&id=619. Accessed on May 8, 2022.
AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM. D256 -10: standard test methods for determining the izod pendulum impact resistance of plastics. West Conshohocken, 2018.
AMERICAN SOCIETY FOR TESTING AND MATERIALS. D570-98: standard test method for water absorption of plastics. West Conshohocken, 2010.
AMERICAN SOCIETY FOR TESTING AND MATERIALS. D3878 – standard referring to standard Terminology for composite materials. Available at: https://www.passeidireto.com/arquivo/49929833/astm-d-3878. Accessed on: 7 jan. 2024.
ARABPOUR, A.; SHOCKRAVI, A.; REZANIA, H.; FARAHATI, R. Investigation of anticorrosive properties of novel silanefunctionalized polyamide/GO nanocomposite as steel coatings. Surfaces and Interfaces, v. 18, 100453, 2020.
ARAÚJO, G. M. G. de. Challenges for applying the Cradle-to-cradle methodology to the life cycle of MDF and MDP furniture. 2012. Dissertation (Master’s in Urban and Environmental Engineering) – Pontifical Catholic University of Rio de Janeiro. Rio de Janeiro, 2012.
ARAÚJO, S. Parque Encontro dos Rios. Meu Piauí Magazine. 2023. Available at: https://meupiaui.com/parqueencontro-dos-rios horarios-e-endereco/. Accessed on: July 27, 2024.
BARBOSA, A. de P. Structural characteristics and properties of polymer composites reinforced with buriti fibers. 2011. Thesis (Doctorate in Engineering and Materials Sciences) – Universidade Estadual do Norte Fluminense. Campos dos Goytacazes, 2011.
BAUMAN, Z. Liquid Modernity. Rio de Janeiro: Jorge Zahar, 2001.
BENINI, K. C. C. de C. Development and characterization of polymer composites reinforced with lignocellulosic fibers: HIPS/green coconut shell fiber and sugar cane bagasse. 2011. Dissertation (Master’s in Mechanical Engineering) – Universidade Estadual Paulista. Guaratinguetá, 2011.
BIAZUS, A.; TIME, A. B. da; LEITE, B. G. P. Market overview: wooden panels. BNDES Setorial, Rio de Janeiro, n. 32, p. 49-90, Sep. 2013.
BRAZILIAN ASSOCIATION OF PLANTED FOREST PRODUCERS. ABRAF statistical yearbook 2013: base year 2012. Brasília, 2013.
BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS. NBR 14810-2: medium density particle boards. 3rd ed. Rio de Janeiro, 2013.
BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS. NBR 15326-3. Rio de Janeiro: 2009.
BRAZILIAN SUPPORT SERVICE FOR MICRO AND SMALL COMPANIES. Sustainable ideas and businesses: biojewelry production. Brasília, 2012. Available at: https://bibliotecas.sebrae.com.br/chronus/ARQUIVOS_CHRONUS/bds/bds.nsf/F08FE871B69E106283257A33005B6812/$File/NT0004773.pdf. Accessed on: 6 Oct. 2021.
BRAZILIAN SUPPORT SERVICE FOR MICRO AND SMALL COMPANIES. Find out more about trends in the cachaça market, 2017. Available at: https://www.sebrae.com.br/sites/PortalSebrae/artigos/saiba-mais-sobre-tendenciado-mercado-de cachaca,39aa6a2bd9ded410VgnVCM1000003b74010aRCRD. Accessed on: 15 Oct. 2021.
BROEGA, A. C. Creativity in teaching fashion clothing design: an academic experience. Ensinarmode Magazine, Florianópolis, v. 2, Jun./Sept. 2018.
BRUNDTLAND, G. H. (org.). Our common future. Rio de Janeiro: Fundação Getúlio Vargas, 1991.
CAMPBELL, C. H. G. Development and characterization of a banana fiber composite for application in model aircraft. Volta Redonda: UniFOA, 2020.
CHEN, R. S.; CHAI, Y. H.; OLUGU, E. U.; SALLEH, M. N.; AHMAD, S. Evaluation of mechanical performance and water absorption properties of modified sugarcane bagasse high-density polyethylene plastic bag green composites. Polymers and Polymer Composites, v. 29(9_suppl), S1134-S1143, 2021.
CHENG, Q.; JIANG, H.; LI, Y. Effect of fiber content and orientation on the scratch behaviour of short glass fiber reinforced PBT composites. Tribology International, v. 146, 106221, 2020.
CIMODE. Electronic proceedings [...] Guimarães: University of Minho, 2012.
DATSYUK, V.; TROTSENKO, S.; TRAKAKIS, G.; BODEN, A.; VYZAS-ASIMAKOPOULOS, K.; PARTHENIOS, J.; PAPAGELIS, K. Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polymer Testing, v. 82, 106317, 2020.
FARIAS, V. A. Riverside Park in the Santa Rosa neighborhood – Teresina (PI). 2018. Course Completion Work (Bachelor's Degree in Architecture and Urbanism) – Federal University of Piauí. Teresina, 2018.
GAMMA, D. P. N. Analysis of tension and flexural properties of sandwich composites. 2017. Dissertation (Master’s in Mechanical Engineering) – Universidade Federal Fluminense. Niterói, 2017.
GANESAN, K.; RAJAGOPAL, K.; THANGAVEL, K. Evaluation of bagasse ash as supplementary cementitious material. Cement & Concrete Composites, v. 29, issue 6, p. 515-524, July 2007.
GHOLAMPOUR, A.; OZBAKKALOGLU, T. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J. Mater. Sci., v. 55, p. 829–892, 2019.
GOLA, E. The jewel: history and design. 3th ed. São Paulo: Senac São Paulo, 2021.
GOWOREK, H.; OXBORROW, L.; McLAREN, A.; COOPER, T.; HILL, H. Managing sustainability in the fashion business: challenges in product development for clothing longevity in the UK. Journal of Business Research. 2018. Available at: https://doiorg/10.1016/j.jbus res.2018.07.021.
HAIL, M. da G. A. N. The river as landscape: management of river corridors within the framework of spatial planning. Lisbon: Calouste Gulbenkian Foundation, 1999.
HARD, A. C. F. M. Development and characterization of composites reinforced with flax and sisal fibers. 2013. Dissertation (Master’sin Polymer Engineering) – Minho's university. Guimarães, 2013.
HSISSOU, R.; SEGHIRI, R.; BENZEKRI, Z.; HILALI, M.; RAFIK, M.; ELHARFI, A. Polymer composite materials: a comprehensive review. Composite structures, v. 262, 113640, 2021.
ISLAN, S.; BHAT, G. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of Environmental Management, v. 251. 2019. Available at: https://doi.org/10.1016/j.jenvman.2019.109536.
KEMPER, J. A.; BALLANTINE, P. W. What do we mean by sustainability marketing? Journal of Marketing and Management, v. 35, n. 3-4, p. 277–309. 2019.
LIN, J.; ZHANG, X.; ZHANG, X. Fabrication of Glass Fiber-Reinforced Polymer (GFRP) Composite Laminates by Wet Hand Lay-Up/Vacuum Bag (WLVB) Method. Young Journal. 2023. DOI: 10.3791/200332
LOPEZ, Y. M.; PAES, J. B.; GUSTAVE, D.; GONÇALVES, F. G.; MÉNDEZ, F. C.; NANTET, A. C. T. Production of woodplastic composites using cedrela odorata sawdust 163 waste and recycled thermoplastics mixture from postconsumer products. A sustainable approach for cleaning production in Cuba. Journal of Cleaner Production, v. 244, n. 1, p. 1- 10, 2020.
LIGHT, S. M.; BOILER-PIRES, A.; FERRÃO, P. M. C. Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: ecodesign and LCA as strategy for automotive components. Resources, Conservation and Recycling, Elsevier, v. 54, ed. 12, p. 1135-1144, 2010.
MACENA, B. B.; MARQUES, N.; BROEGA, A. C. Slow Fashion: characteristics, importance and the relationship with design, 2018. Available at: https://repositorium.sdum.uminho.pt/bitstream/1822/57144/1/CIMODE2018_BBM_NM_CBA.pdf. Accessed on: 9 Nov. 2021.
MAZZANTI, V.; PARIANTE, R.; BONANNO, A.; DE BALLESTEROS, O. R.; MOLLICA, F.; FILIPPONE, G. Reinforcing mechanisms of natural fibers in green composites: role of fibers morphology in a PLA/hemp Model System. Composites Science and Technology, v. 180, p. 51-59, 2019.
MAZZOTTI, K.; BROEGA, A. C.; GOMES, L. A. V de N. The exploration of creativity, through the use of the brainstorming technique, adapted to the fashion creation process. In: INTERNATIONAL FASHION AND DESIGN CONGRESS, 2012, Guimarães. Anais eletrônicos [...]Guimarães: Universidade do Minho, 2012.
MISUCOCHI, L. K. da S.; PEREIRA, H. A. A.; RUSCHIVAL, C. B; MEDEIROS, A. C. C.; SANTOS, B. R. de C. Proposal for the sustainable use of residual MDF dust resulting from furniture production. Projética, Londrina, PR. v. 13, n. 1, 2022. DOI: 10.5433/2236-2207.2020v11n2p266
MULINARI, D. R.; VOORWALD, H. J.; CIOFFI, M. O. H.; da SILVA, M. L. C.; da CRUZ, T. G.; SARON, C. Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology, v 69, issue 2, p. 214-219, Feb. 2009
NAGARAJAN, B.; ARSHAD, M.; ULLAH, A.; MERTINY, P.; QURESHI, A. J. Additive manufacturing ferromagnetic polymers using stereolithography: materials and process development. Manufacturing Letters, v. 21, p. 12-16, 2019.
NATIONAL SUPPLY COMPANY. Monitoring the Brazilian sugarcane harvest, v. 4. Brasília: Conab, 2018.
OLIVEIRA, O. C. Evaluation of fresh and modified sugarcane bagasse fibers for application in composites. 2018. Dissertation (Master’s in Engineering and Materials Science) – Universidade Estadual do Norte Fluminense. Campos dos Goytacazes, 2018.
PARTS, P.; CARVALHO, H.; SALMAN, H.; LEITE, M. Natural Fiber Composites and Their Applications: a review. Journal of Compositie Scienece, v. 2, n. 66, 2018.
PICKERING, K. L.; EFENDY, M. G. A.; LE, T. M. A. A review of recent developments in natural fiber composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, v. 83, p. 98-112, apr. 2016.
PRASAD, L.; KUMAR, S.; PATEL, R. V.; YADAV, A.; KUMAR, V.; WINCZEK, J. Physical and mechanical behavior of sugarcane bagasse fiber-reinforced epoxy bio-composites. Materials, v. 13, n. 23, 5387, 2020.
PRIOLI, A. de A.; PALMA, J. de C.; MORAES, V. T. de. Evaluation of the mechanical properties of composites produced with post-consumer waste from the furniture industry, 2019. Available at: https://maua.br/files/122019/avaliacao-das-propriedades-mecanicas-compositos-produtores-com-residuos-pos-consumoindustria-furniture-261225.pdf. Accessed on: 16 Nov. 2021.
RAMACHANDRAN, A.; MAVINKERE, R. S.; KUSHVAHA, V.; KHAN, A.; SEINGCHIN, S.; DHAKAL, H. N. Modification of fibers and matrices in natural fiber reinforced polymer composites: a comprehensive review. Macromolecular rapid communications, v. 43, n. 17, 2100862, 2022.
SALTORATTO, G. V.; GASCHLER, T.; AGUIAR, V. S. M.; OLIVEIRA, M. C. Generation Z and the impacts on organizational culture. Online Production Magazine. Florianópolis, v. 19, n. 3, p. 1027-1047, 2019, SC.
SAMPAIO, L. M. de M. Contemporary Jewelry: composite material reinforced with chicken feather fibers. 2021. Dissertation (Master's in Design and Marketing of Textile Products, Clothing and Accessories) – University of Minho. Braga, 2021.
SANTOS, R. Jewelry: fundamentals, processes and techniques. São Paulo: Senac, 2017
SILVA, I. C.; OLIVEIRA, A. Eco composite of vegetable resin and piassava fiber waste: machining and sensorial studies for applications in the field of design. Design and Technology, v. 11, n. 23, p. 24, 2021.
SINGH, C. P.; PATEL, R. V.; HASAN, M. F.; YADAV, A.; KUMAR, V.; KUMAR, A. Fabrication and evaluation of physical and mechanical properties of jute and coconut coir reinforced polymer matrix composite. Mater. Today Proc. 2020.
TUNN, V. S. C.; BOCKEN, N. M. P.; VAM DEN HENDE, E. A.; SCHOORMANS, J. L. P. Business models for sustainable consumption in the circular economy: an expert study. Journal of Cleaner Production, v. 212, p. 324-333, 2019. Available at: https://doi.org/10.1016/j.jclepro.2018.11.290.
UNION OF SUGAR CANE INDUSTRIES. 2019. Available at: www.unica.com.br. Accessed on: 14 Oct. 2021.
VINOD, A.; SANJAY, M. R.; SUCHART, S.; JYOTISHKUMAR, P. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, v. 258, 120978, 2020.
WONDMAGEGNEHU, B. T. Investigating the influence of sugarcane bagasse ash volume variation in glass fiber reinforced with epoxy resin matrix composite material. Polymers and Polymer Composites, v. 31, 09673911231196037, 2023.
YOUNG, R. Knowledge Management. Tools and Techniques Manual. Asian Productivity Organization. Tokyo. 2020.
ZAABA, N. F.; ISMAIL, H. Effects of natural weathering on the degradation of alkaline-treated peanut shell filled recycled polypropylene composites. Journal of Vinyl & Additive Technology, v. 25, n. 1, p. 26-34, 2019.
ZHENG, S.; BELLIDO-AGUILAR, D. A.; HU, J.; HUANG, Y.; ZHAO, X.; WANG, Z.; CHEN, Z. Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates. Progress in Organic Coatings, v. 136, 105265, 2019.
ZHOU, W.; KOU, Y.; YUAN, M.; Li, B.; CAI, H.; Li, Z.; DANG, Z. M. Polymer composites filled with core doubleshell structured fillers: effects of multiple shells on dielectric and thermal properties. Composites Science and Technology, v. 181, 107686, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sustainability in Debate
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
SUSTAINABILITY IN DEBATE – Copyright Statement
The submission of original scientific work(s) by the authors, as the copyright holders of the text(s) sent to the journal, under the terms of Law 9.610/98, implies in the concession of copyrights of printed and/or digital publication to the Sustainability in Debate Journal of the article(s) approved for publication purposes, in a single issue of the journal. Furthermore, approved scientific work(s) will be released without any charge, or any kind of copyright reimbursement, through the journal’s website, for reading, printing and/or downloading of the text file, from the date of acceptance for publication purposes. Therefore, the authors, when submitting the article (s) to the journal, and gratuitous assignment of copyrights related to the submitted scientific work, are fully aware that they will not be remunerated for the publication of the article(s) in the journal.
The Sustainability in Debate Journal is licensed under Creative Commons License – Non-Commercial-No-Derivation Attribution (Derivative Work Ban) 3.0 Brazil, aiming at dissemination of scientific knowledge, as indicated on the journal's website, which allows the text to be shared, and be recognized in regards to its authorship and original publication in this journal.
Authors are allowed to sign additional contracts separately, for non-exclusive distribution of the works published in the Sustainability in Debate Journal (for example, in a book chapter), provided that it is expressed the texts were originally published in this journal. Authors are allowed and encouraged to publish and distribute their text online, following publication in Sustainability in Debate (e.g. in institutional repositories or their personal pages). The authors expressly agree to the terms of this Copyright Statement, which will be applied following the submission and publishing by this journal.