Variación del potencial bioclimático en São Paulo ante el escenario de cambio climático

Autores/as

  • Emeli Lalesca Aparecida da Guarda Universidade Federal de Santa Catarina, Programa de Pós-graduação em Arquitetura e Urbanismo, Laboratório de Conforto Ambiental, Florianópolis (SC), Brasil
  • Daniela Kramer Universidade Federal de Santa Catarina (UFSC), Laboratório de Conforto Ambiental (LabCon), Florianópolis-SC, Brasil
  • Martin Gabriel Ordenes Mizgier Universidade Federal de Santa Catarina (UFSC), Programa de Pós-Graduação em Arquitetura e Urbanismo (PosARQ), Laboratório de Conforto Ambiental (LabCon), Florianópolis-SC, Brasil

DOI:

https://doi.org/10.18830/1679-09442024v17e43180

Palabras clave:

Estratégias Bioclimáticas. Série Histórica. Mudanças Climáticas.

Resumen

Las preocupaciones globales sobre las condiciones de confort térmico debido al cambio climático se han convertido en una agenda prioritaria para el siglo XXI. Esta investigación tiene como objetivo investigar la evolución del clima, las estrategias de diseño bioclimático pasivo y las horas de comodidad y malestar, con base en la serie climática histórica de la ciudad de São Paulo. La metodología consiste en elaborar el perfil climático de la región de estudio a partir de la serie histórica, y analizar el potencial bioclimático a través de estrategias de diseño bioclimático, utilizando el software AnalysisBIO. Los resultados muestran tendencias de variaciones en las amplitudes térmicas, que pueden inducir estrés térmico por calor de los ocupantes, y los porcentajes de malestar fueron más frecuentes en los últimos años. La estrategia de sombreado presenta mayores valores de horas requeridas en años más recientes, mostrando un incremento de 3.1 puntos porcentuales en 2018 respecto a 1989. La investigación de estrategias bioclimáticas de manera evolutiva, presenta recomendaciones que se deben aplicar hoy en los proyectos para que edificios aseguran condiciones de confort térmico en São Paulo en los próximos años.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Emeli Lalesca Aparecida da Guarda, Universidade Federal de Santa Catarina, Programa de Pós-graduação em Arquitetura e Urbanismo, Laboratório de Conforto Ambiental, Florianópolis (SC), Brasil

Es licenciado en Arquitectura y Urbanismo por la Universidad de Cuiabá (2017), máster en Ingeniería de Edificación y Ambiental por la Universidad Federal de Mato Grosso (2019) y doctorado en Arquitectura y Urbanismo por la Universidad Federal de Santa Catarina ( en curso). Actualmente es investigadora del Laboratorio de Confort Ambiental (LabCon/UFSC) y del Laboratorio de Eficiencia Energética en Edificios (LabEEE/UFSC). Trabaja en el proyecto de implementación del nuevo método de evaluación de Eficiencia Energética del Programa Brasileño de Etiquetado de Edificios en el ámbito del Programa Nacional de Conservación de Energía Eléctrica en colaboración con Eletrobrás y PBEEdifica. También actúa como investigadora asociada del Laboratorio de Tecnología y Confort Ambiental (LATECA/UFMT). Trabaja en las áreas de: cambio climático, eficiencia energética, desempeño térmico de edificaciones y arquitectura bioclimática, estrategias de diseño bioclimático. Tiene experiencia con simulaciones por computadora en el campo del desempeño termoenergético.

Daniela Kramer, Universidade Federal de Santa Catarina (UFSC), Laboratório de Conforto Ambiental (LabCon), Florianópolis-SC, Brasil

Licenciado en Arquitectura y Urbanismo por la Universidad Federal de Santa Catarina, investigador de Iniciación Científica en el Laboratorio de Confort Ambiental, investigando el cambio climático, el desempeño térmico y la aceptabilidad térmica de los edificios.

Martin Gabriel Ordenes Mizgier, Universidade Federal de Santa Catarina (UFSC), Programa de Pós-Graduação em Arquitetura e Urbanismo (PosARQ), Laboratório de Conforto Ambiental (LabCon), Florianópolis-SC, Brasil

Es ingeniero civil de la Pontificia Universidad Católica de Chile (2002) y doctor en Ingeniería Civil de la Universidad Federal de Santa Catarina (2008). Actualmente es profesor asociado del Departamento de Arquitectura y Urbanismo de la Universidad Federal de Santa Catarina y profesor acreditado del Programa de Posgrado en Arquitectura y Urbanismo (PosARQ/UFSC). Investigador del Grupo de Investigación en Confort Ambiental y Eficiencia Energética en Arquitectura del Laboratorio de Confort Ambiental (LabCon/ARQ). Tiene experiencia en el área de Arquitectura y Tecnología del Entorno Construido, con énfasis en Construcción Civil, trabajando principalmente en los siguientes temas: desempeño térmico de la envolvente, eficiencia energética de las edificaciones, arquitectura bioclimática, confort térmico y sustentabilidad.

Citas

ALMUSAED, A. Biophilic and bioclimatic architecture: analytical therapy for the next generation of passive sustainable architecture. Springer, London; New York, 2011

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15.575-1: Edificações habitacionais - Desempenho - Requisitos gerais. Rio de Janeiro, 2013.

BAI, L.; YANG, L.; SONG, B. The impact of climate change on thermal climate zones and residential energy efficiency designs during the past decades in China. Adv. Build. Energy Res. v. 0, p. 1–14, 2019. DOI: https://doi.org/10.1080/17512549.2019.1653367.

BIENVENIDO-HUERTAS, D.; RUBIO-BELLIDO, C.; MARIN-GARCIA, D.; CANIVEELL, J. Influence of the Representative Concentration Pathways (RCP) scenarios on the bioclimatic design strategies of the built environment. Sustainable Cities and Society, 2021. DOI: https://doi.org/10.1016/j.scs.2021.103042

CALLEJAS, I.; J.; A.; APOLONIO, R.; M.; GUARDA, E.; L.; A.; DURANTE, L.; C.; ROSSETI, K.; A.; C.; ROSETA, F.; AMARANTE, L.; M. Bermed Earth-Sheltered Wall for Low-Income House: Thermal and Energy Measure to Face Climate Change in Tropical Region. Applied Sciences, v. 11, 2021. DOI: https://doi.org/10.3390/app11010420

CASAGRANDE, B. G. Cenários climáticos futuros: Diagnóstico prospectivo do desempenho termoenergético de edifícios comerciais no Brasil para o século XXI. Dissertação, f.136 (Mestrado), Universidade Federal do Espirito Santo, 2013.

CASQUERO-MODREGO, N.; GONI-MODREGO, M. Energy retrofit of an existing affordable building envelope in Spain, case study. Sustainable Cities and Society, v. 44, p. 395-405, 2019. DOI: https://doi.org/10.1016/j.scs.2018.09.034. Acesso em: 05 de setembro de 2021.

CLIMATE.ONEBUILDINGS.ORG. (2020) Repository of free climate data for building performance simulation. WMO Region 3 - South America. Disponível em: http://climate.onebuilding.org/. Acesso em: 9 jun. 2021.

CRAWLEY, D.; B.; LAWRIE, L.; K. Rethinking the TMY: Is the ‘typical’ meteorological year best for building performance simulation? 14th Conference of International Building Performance Simulation Association, India, Dec 7-9, 2015. Acesso em: 05 de setembro de 2021.

FERNANDES, J.; T. Código de obras e edificações do DF: Inserção de conceitos bioclimáticos, conforto térmico e eficiência energética. Dissertação (mestrado) do Programa de Pós-Graduação em Arquitetura e Urbanismo, Universidade de Brasília, 2009.

FLORES-LARSEN, S.; FILIPPÍN, C.; BAREA, G. Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, v. 184, p. 216-226. 2019. DOI: https://doi.org/10.1016/j.enbuild.2018.12.015

FROTA, A.; B.; SCHIFFER, S.; T.; R. Manual de conforto térmico. 5° edição, p. 243, 2003.

GAITANI, N.; MIHALAKAKOU, G.; SANTAMOURIS, M. On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Building and Environment, v. 42, p. 317-324, 2007. DOI: https://doi.org/10.1016/j.buildenv.2005.08.018. Acesso em: 05 de setembro de 2021.

GIVONI, B. Comfort climate analysis and buildings design guidelines. Energy and Buildings, v.18, n.1, p-11-23, 1992.

GUAN, L. Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming. Build. Environ, v. 55, p.8-19, 2012. DOI: https://doi.org/10.1016/J.BUILDENV.2011.11.013.

GUAN, L. Preparation of future weather data to study the impact of climate change on buildings. Build. Environ, v. 44, p.793-800, 2009. DOI: https://doi.org/10.1016/J.BUILDENV.2008.05.021.

GUARDA, E. L. A.; DURANTE, L. C.; CALLEJAS, I. J. A. Impacto das mudanças climáticas no ambiente térmico interno de habitação unifamiliar em Cuiabá-MT. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 11, p. e020031, 2020. DOI: 10.20396/parc.v11i0.8657188.

GUARDA, E. L. A; DURANTE, L. C; CALLEJAS, I. J. A. Efeitos do Aquecimento global nas estratégias de projeto das edificações por meio de cartas bioclimáticas. Revista Engineering and Science (E&S), v.7, n.2, p.54-70. Cuiabá, 2018. DOI: https://doi.org/10.18607/es201876827

GUARDA, E.; L.; A.; DOMINGOS, R.; M.; A.; JORGE, S.; H.; M.; DURANTE, L.; C.; SANCHES, J.; C.; M.; LEÃO, M.; CALLEJAS, I.; J.; A. The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities e Society, v. 52, p. 101843, 2020. DOI: https://doi.org/10.1016/j.scs.2019.101843

GUO, S.; YAN, D.; HONG, T.; XIAO, C.; CUI, Y. A novel approach for selecting typical hot-year (THY) weather data. Appl. Energy, v. 242, p.1634-1648, 2019. DOI: https://doi.org/10.1016/j.apenergy.2019.03.065.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo 2010. Rio de Janeiro, 2010. Disponível em: <http://censo2010.ibge.gov.br/>. Acesso em: 09 de junho de 2021.

IEA - International Energy Agency. 2019 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and constuction sector. [s.l: s.n.]. Disponível em: https://webstore.iea.org/download/direct/2930?filename=2019_global_status_report_for_buildings_and_construction.pdf

IEA - International Energy Agency. The Future of Cooling Opportunities for energy-efficient air conditioning Together Secure Sustainable. [s. l.], p. 92, 2018. Disponível em: www.iea.org/t&c/

INMET - Instituto Nacional de Meteorologia. Banco de dados históricos da cidade de São Paulo. Disponível em: https://portal.inmet.gov.br/. Acesso em: 9 jun. 2021.

INMET - Instituto Nacional de Meteorologia. Normais Climatologias da cidade de São Paulo. Disponível em: https://portal.inmet.gov.br/. Acesso em: 9 jun. 2021.

IPCC - Intergovernmental Panel on Climate Change. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland. Disponível em: https://www.ipcc.ch/report/ar4/syr/. 2007.

IPCC - Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland. Disponível em: https://www.ipcc.ch/report/ar5/syr/. 2014.

IPCC. Painel Intergovernamental sobre Mudanças Climáticas 2020. Disponível em: https://www.ipcc.ch/index.htm. Acesso em: 8 jun. 2021.

KHAMBADKONE, N. K.; JAIN, R. A bioclimatic analysis tool for investigation of the potential of passive cooling and heating strategies in a composite Indian climate. Building and Environment, v.123, p. 469-493, 2017. DOI: https://doi.org/10.1016/j.buildenv.2017.07.023

KISHORE, N. Impact of climate change on future bioclimatic potential and residential building thermal and energy future performance in India. Indoor and Build Environment, 2021. DOI: https://doi.org/10.1177/1420326X21993919. Acesso em: 05 de setembro de 2021.

KOSIR, M. Climate Adaptability of Buildings: Bioclimatic Design in the Light of Climate Change. Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-18456-8. Acesso em: 05 de setembro de 2021.

LABEEE- laboratório de Eficiência Energética em Edificações. Programa Computacional AnalysisBIO, Versão: 2.1.5. Universidade Federal de Santa Catarina. Florianópolis, 2010. Acesso em: 05 de setembro de 2021.

MACIEL, A. A; FORD, B; LAMBERTS, R. Main Influences on the design philosophy and knowledge basis to bioclimatic integration into architecture design – The example of best practices. Building and Environmental, v. 42, p. 3762-3773. 2007. DOI: https://doi.org/10.1016/j.buildenv.2006.07.041

MACIEL, A.; A. Projeto Bioclimático em Brasília: Estudo de caso em edifícios de escritórios. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Catarina, 2002.

MONTERDE, M. A; LOZANO, G. V; GUILLAMÓN, G, I. Sustainable building strategies on regional scale: proposal for the Valencian region in Spain. Indoor and Built Environment, v. 25, p. 1054-1064. 2016. DOI: https://doi.org/10.1177/1420326X16659327

OLGYAY, V. Design with climate. Princeton University Press, New Jersey, USA, 1963.

OMER, A.; M. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, v. 12, p.2265-2300, 2008. DOI: https://doi.org/10.1016/j.rser.2007.05.001

PAJEK, L.; KOSIR, M. Implications of present and upcoming changes in bioclimatic potential for energy performance of residential buildings. Build Environmental, v. 127, p. 157-17, 2018. DOI: https://doi.org/10.1016/j.buildenv.2017.10.040

PAJEK, L.; KOSIR, M. Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation. Applied Energy, v. 297, p. 117116, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.117116

PAJEK, L; KOSIR, M. Can building energy performance be predicted by a bioclimatic potential analysis? Case study of the Alpine-Adriatic region. Energy and Buildings, v. 139, p. 160-173. 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.01.035

PEEL, M. C; FINLAYSON, B. L; MCMAHON T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, v. 11, p.1633-1644, 2007. DOI: https://doi.org/10.5194/hess-11-1633-2007

RIBEIRO, B.; R. Estratégias bioclimáticas para projeto de edificações com base em dados meteorológicos entre 1960 e 2018 para capitais da região Sul do Brasil. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná, 2019.

RODRIGUEZ, M.; V.; CORDERO, A.; S.; MELGAR, G.; S.; MARQUEZ, J.; M.; A. Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies. Energies, v. 13, 2020. DOI: https://doi.org/10.3390/en13236188

ROUAULT, F.; OSSIO, F.; GONZALEZ-LEVIN, P.; MEZA, F. Impact of climate change on the energy needs of houses in Chile. Sustainability, v. 11, 2019. DOI: https://doi.org/10.3390/su11247068

ROUX, C.; SCHALBART, P.; ASSOUMOU, E.; PEUPORTIER, B. Integrating climate change and energy mix scenarios in LCA of buildings and districts. Appl. Energy. v.184, p.619–629, 2016. DOI: https://doi.org/10.1016/J.APENERGY.2016.10.043.

RUBIO-BELLIDO, C; PULIDO-ARCAS, J. A; CABEZA-LAINEZ, J. M. Adaptation strategies and resilience to climate change of historic dwellings. Sustainability, v. 7, p. 3695-3713. 2015. DOI: https://doi.org/10.3390/su7043695

SERRA, R. Clima, Lugar y Arquitetura. Manual de Diseño Bioclimático. Centro de Investigaciones Energéticas (CIEMAT). Madrid, 1989.

SKARBIT, N.; ÁCS, F.; BREUER, H. The climate of the European region during the 20th and 21st centuries according to Feddema. Int J Climatol, v. 38, p. 2435-2448, 2018. DOI: http://dx.doi.org/10.1002/joc.5346

STAVRAKAKIS, G.; M.; TZANAKI, E.; GEENETZAKI, V.; I.; ANAGNOSTAKIS, G.; GALETAKIS, G.; GRIGORAKIS, E. A computational methodology for effective bioclimatic-design applications in the urban environment. Sustainable Cities and Society, v. 4, p. 41-57, 2012. DOI: https://doi.org/10.1016/j.scs.2012.05.002

SZOKOLAY, S.; V. Introduction to architectural science: the basis of sustainable design. Third edition. London; New York, NY: Routledge; 2014.

TEJERO-GONZÁLEZ, A.; ANDRÉS-CHICOTE, M.; GARCÍA-IBÁNEZ, P.; VELASCO-GOMEZ, E.; REY-MARTINEZ, F.; J. Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renewable and sustainable energy reviews, v. 64, p. 727-742, 2016. DOI: https://doi.org/10.1016/j.rser.2016.06.077

THOMÉ, C. Escola Pública Bioclimática Modular Infantil. Trabalho de Conclusão de Curso. Faculdade de Arquitetura e Urbanismo, Universidade do Sul de Santa Catarina (UNISUL). Tubarão, 2006

TRIANA, M.; A.; LAMBERTS, R.; SASSI, P. Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures. Energy and Buildings, v. 158, p. 1379-1392, 2018. DOI: https://doi.org/10.1016/J.ENBUILD.2017.11.003

WADDICOR, D. A.; FUENTES, E.; SISÓ, L.; SALOM, J.; FAVRE, B.; JIMÉNEZ, C.; AZAR, M. Climate change and building ageing impact on building energy performance and mitigation measures application: A case study in Turin, northern Italy. Build. Environ, v.102, p.13-25, 2016. DOI: https://doi.org/10.1016/J.BUILDENV.2016.03.003.

YILDIZ, B; EART, S; ALPKAN, L; YILDIZ, H; SEZEN, B. Drives of innovate constructive deviance: A moderated mediation analysis. Procedia – Social and Behavioral Sciences, v. 195, p. 1407-1416. 2015. DOI: https://doi.org/10.1016/j.sbspro.2015.06.436

WANG, S; LIU, Y; CAO, Q; LI, H; YU, Y; YANG, Y. Applicability of passive design strategies in China promoted under global warming in past half century. Building and Environment, v. 195, p. 107777, 2021. DOI: https://doi.org/10.1016/j.buildenv.2021.107777

PÉREZ-ANDREU, V; APARICIO-FERNÁNDEZ, C; MARTÍNEZ-ILBERNÓN, A; VIVACONS. Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, v. 165, p. 63–74, 2018. DOI: https://doi.org/10.1016/J.ENERGY.2018.09.015

RAÑESES, M; CHANG-RICHARDS, A; WANG, K; DIRKS, K. Housing for now and the future: A systematic review of climate-adaptive measures. Multidisciplinary Digital Publishing Institute, 2021. DOI: https://doi.org/10.3390/su131267

Publicado

2024-04-23

Cómo citar

Guarda, E. L. A. da, Kramer, D., & Mizgier, M. G. O. (2024). Variación del potencial bioclimático en São Paulo ante el escenario de cambio climático. Paranoá, 17, e43180. https://doi.org/10.18830/1679-09442024v17e43180

Número

Sección

Tecnología, Medio Ambiente y Sostenibilidad

Artículos más leídos del mismo autor/a

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 > >> 

También puede {advancedSearchLink} para este artículo.