Contribución del BIM al desarrollo de la Economía Circular en el ambiente construido

una revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.18830/issn.1679-0944.n30.2021.01

Palabras clave:

Ambiente construido; sustentabilidad; Economía Circular; BIM; gestión de la construcción

Resumen

La forma en que se produce, mantiene y renueva el ambiente construido es determinante para la condición de insostenibilidad global que vivimos. Así, la Economía Circular aparece como una propuesta en busca de la aplicación práctica de los principios de desarrollo sostenible en el sector, pero enfrenta muchas barreras en su implementación. El Modelado de Información de la Construcción (BIM ”“ en inglés Building Information Modeling) es candidato a facilitador en esta transición, siendo el objetivo de este trabajo presentar una visión general de su potencial de contribución y limitaciones a partir de una Revisión Sistemática de Literatura (RSL) y del análisis temático de los resultados. Se observa con los resultados que el BIM tiene un potencial significativo para contribuir a la Economía Circular en el ambiente construido, principalmente en el soporte de análisis circulares desde las fases iniciales del proyecto, en la gestión de bancos de materiales de edificios, en la adaptabilidad computacional a nuevos flujos de trabajo y en la habilitación de plataformas en la integración de la cadena productiva. De esta manera, la Economía Circular puede beneficiarse del BIM como un agente integrador de la cadena productiva y del (de los) ciclo(s) de vida del ambiente construido.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Victor Filipi Cruz, Pós-Graduação em Arquitetura e Urbanismo / Reabilita

Atualmente sou sócio-diretor da Quantificar, que tem foco otimizar economicamente melhores empreendimentos de construção mediante serviços de base tecnológica digital, especialmente com o BIM.

Durante a graduação em Engenharia Civil me engajei com o Movimento Empresa Júnior e estagiei num escritório pioneiro em projetos de sistemas prediais em BIM em Goiânia. Após a graduação trabalhei na coordenação de alguns projetos de pequeno porte e decidi dedicar um semestre para estudos e novos aprendizados em Londres, onde me interessei e aprendi mais sobre economia circular e transformação digital para o ambiente construído. Ao retornar ao Brasil, trabalhei durante quase um ano com modelagem BIM em um projeto de renovação do aeroporto de São Francisco, EUA.

Os aprendizados decorrentes dessas experiências, unidos a um interesse por ajudar a viabilizar economicamente produtos imobiliários e de construção melhores e mais sustentáveis, me levaram em 2019 à Quantificar e ao Reabilita.

Thiago Montenegro Góes, Programa de Pós-Graduação em Arquitetura e Urbanismo - Universidade de Brasília

Arquiteto e Urbanita pela Universidade Federal de Santa Catarina (2011) e mestrado em Arquitetura e Urbanismo pela Universidade de Brasília (2018). Atualmente é doutorando em Arquitetura e Urbanismo pela Universidade de Brasília. Possui uma especialização em Arquitetura, Construção e Gestão da Edificação Sustentável pela AVM Faculdades Integradas (2016) e em Reabilitação Ambiental Sustentável Arquitetônica e Urbanística pela Universidade de Brasília (2017). Realiza em pesquisas de sustentabilidade da edificação, eficiência energética, conforto ambiental e ferramentas computacionais. Possui experiencia docente na graduação nos cursos de Arquitetura e Urbanismo no UniProjeção (2018-2019) e Universidade de Brasília (2019-2020), na pós-graduação no curso de Reabilitação Ambiental Sustentável Arquitetônica e Urbanística pela Universidade de Brasília (2019-2020), assim como cursos de simulação computacional do ambiente construído. Também possui experiencia profissional em consultorias e coordenação de projetos, como no projeto LabZero da parceria da UnB e do Procel.

Citas

AHMED, S. Barriers to Implementation of Building Information Modeling (BIM) to the Construction Industry: A Review. Journal of Civil Engineering and Construction, [S. l.], v. 7, n. 2, p. 107, 2018. https://doi.org/10.32732/jcec.2018.7.2.107

AKANBI, L. A. et al. Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resources, Conservation and Recycling, [S. l.], v. 129, n. November, p. 175– 186, 2018. https://doi.org/10.1016/j.resconrec.2017.10.026

AKANBI, L. A. et al. Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy. JOURNAL OF CLEANER PRODUCTION, [S. l.], v. 223, p. 386–396, 2019. https://doi.org/10.1016/j.jclepro.2019.03.172

AKBARIEH, A. et al. BIM-based end-of-lifecycle decision making and digital deconstruction: Literature review. Sustainability (Switzerland), [S. l.], v. 12, n. 7, 2020. https://doi.org/10.3390/su12072670

AKINADE, O.; OYEDELE, Lukumon O. Integrating construction supply chains within a circular economy: An ANFIS-based waste analytics system (A-WAS). JOURNAL OF CLEANER PRODUCTION, [S. l.], v. 229, p. 863–873, 2019. https://doi.org/10.1016/j.jclepro.2019.04.232

ALALOUL, W. S. et al. Industrial Revolution 4.0 in the construction industry: Challenges and opportunities for stakeholders. Ain Shams Engineering Journal, [S. l.], v. 11, n. 1, p. 225–230, 2020. https://doi.org/10.1016/j.asej.2019.08.010

ARYANI, A. L; BRAHIM, J.; FATHI, M. S. The development of building information modeling (BIM) definition. Applied Mechanics and Materials, [S. l.], v. 567, n. June, p. 625– 630, 2014. https://doi.org/10.4028/www.scientific.net/AMM.567.625

AZHAR, Salman. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry, [S. l.], v. 11, n. 3, p. 241–252, 2011. https://doi.org/10.1061/(ASCE)LM.1943- 5630.0000127

BENACHIO, G. L. F.; FREITAS, M. D. C. D.; TAVARES, S. F. Circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, [S. l.], v. 260, 2020. https://doi.org/10.1016/j.jclepro.2020.121046

BERTIN, I. et al. A BIM-based framework and databank for reusing load-bearing structural elements. Sustainability (Switzerland), [S. l.], v. 12, n. 8, 2020. https://doi.org/10.3390/SU12083147

CAI, G.; WALDMANN, D. A material and component bank to facilitate material recycling and component reuse for a sustainable construction: concept and preliminary study. Clean Technologies and Environmental Policy, [S. l.], v. 21, n. 10, p. 2015–2032, 2019. https://doi.org/10.1007/s10098-019-01758-1

CARADONNA, J. L. Sustainabilty: A History. Nova York: Oxford University Press, 2014. 331 p.

CUMO, F. et al. Optimization of design and management of a hydroponic greenhouse by using BIM application software. International Journal of Sustainable Development and Planning, [S. l.], v. 15, n. 2, p. 157–163, 2020. https://doi.org/10.18280/ijsdp.150205

DAINTY, A. R. J.; BROOKE, R. J. Towards improved construction waste minimisation: a need for improved supply chain integration? Structural Survey, [S. l.], v. 22, n. 1, p. 20–29, 2004.

https://doi.org/10.1108/02630800410533285

ELLEN MACARTHUR FOUNDATION (EMF). Circularity in the built environment: case studies a compilation of case studies from the CE100. [S. l.]: Ellen MacArthur Foundation, 2016. 72p. Disponível em: https://www.ellenmacarthurfoundation.org/assets/downloads/Built-Env-Co.Project.pdf. Acesso em: 12 jun. 2020.

ELLEN MACARTHUR FOUNDATION (EMF). Towards the Circular Economy: Vol. 1: an economic and business rationale for an accelerated transition. [S.l.:s.n.], 2013. Disponível em: https://www.ellenmacarthurfoundation.org/publications/towards-the-circular-economy- vol-1-an- economic-and-business-rationale-for-an-accelerated-transition. Acesso em: 14 fev. 2020.

FARGNOLI, M. et al. A BIM-based PSS Approach for the Management of Maintenance Operations of Building Equipment. BUILDINGS, [S. l.], v. 9, n. 6, 2019. https://doi.org/10.3390/buildings9060139

GEISSDOERFER, M. et al. The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, [S. l.], v. 143, p. 757–768, 2017. https://doi.org/10.1016/j.jclepro.2016.12.048

GHISELLINI, P.; CIALANI, C.; ULGIATI, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, [S. l.], v. 114, p. 11–32, 2016. https://doi.org/10.1016/j.jclepro.2015.09.007

HARDING, R. Ecologically sustainable development: Origins, implementation and challenges. Desalination, [S. l.], v. 187, n. 1–3, p. 229–239, 2006. https://doi.org/10.1016/j.desal.2005.04.082

HOSSAIN, Md U. et al. Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renewable and Sustainable Energy Reviews, [S. l.], v. 130, n. June, p. 109948, 2020. https://doi.org/10.1016/j.rser.2020.109948

INTERNATIONAL ENERGY AGENCY (IEA). 2019 Global Status Report for Buildings and Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector. [S. l.]: United Nations Environment Programme, 2019. 41p. https://wedocs.unep.org/bitstream/handle/20.500.11822/30950/2019GSR.pdf?sequence=1&isAllowed= y. Acesso em: 14 abr. 2020.

JAYASINGHE, L. B.; WALDMANN, Daniele. Development of a BIM-Based Web Tool as a Material and Component Bank for a Sustainable Construction Industry. SUSTAINABILITY, [S. l.], v. 12, n. 5, 2020. https://doi.org/10.3390/su12051766

JUNG, W.; LEE, G. The Status of BIM Adoption on Six Continents. International Journal of Civil, Structural, Construction and Architectural Engineering, [S. l.], v. 9, n. 5, p. 406–410, 2015. https://doi.org/10.5281/zenodo.1100430

KIRCHHERR, J. et al. Barriers to the Circular Economy: Evidence From the European Union (EU). Ecological Economics, [S. l.], v. 150, n. April, p. 264–272, 2018. https://doi.org/10.1016/j.ecolecon.2018.04.028

KIRCHHERR, J.; REIKE, D.; HEKKERT, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, [S. l.], v. 127, n. September, p. 221–232, 2017. https://doi.org/10.1016/j.resconrec.2017.09.005

KORHONEN, J.; HONKASALO, A.; SEPPÄLÄ, J. Circular Economy: The Concept and its Limitations.

Ecological Economics, [S. l.], v. 143, p. 37–46, 2018. https://doi.org/10.1016/j.ecolecon.2017.06.041

LEISING, E.; QUIST, J.; BOCKEN, N. Circular Economy in the building sector: Three cases and a collaboration tool. JOURNAL OF CLEANER PRODUCTION, [S. l.], v. 176, p. 976–989, 2018. https://doi.org/10.1016/j.jclepro.2017.12.010

MARZOUK, M.; ELMARAGHY, A.; VOORDIJK, H. Lean deconstruction approach for buildings demolition processes using BIM. Lean Construction Journal, [S. l.], p. 147–173, 2019. https://www.scopus.com/inward/record.uri?eid=2-s2.0 85078631338&partnerID=40&md5=bd1353828d22a326815d8780b52225b6

MINUNNO, R. et al. Strategies for applying the circular economy to prefabricated buildings. Buildings, [S. l.], v. 8, n. 9, 2018. https://doi.org/10.3390/buildings8090125

MUNARO, M. R.; TAVARES, S. F.; BRAGANCA, L. Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. JOURNAL OF CLEANER PRODUCTION, [S. l.], v. 260, 2020. https://doi.org/10.1016/j.jclepro.2020.121134

ORGANIZAÇÃO DAS NAÇÕES UNIDAS (ONU). Transforming our World: The 2030 Agenda for Sustainable Development. [S. l.: s. n.], 2015. 41 p. Disponível em: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication. Acesso em: 6 abr. 2020.

ROSE, C. M.; STEGEMANN, J. A. Characterising existing buildings as material banks (E-BAMB) to enable component reuse. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, [S. l.], v. 172, n. 3, p. 129–140, 2018. https://doi.org/10.1680/jensu.17.00074

SACHS, J. D. The Age of Sustainable Development. Nova York: Columbia University Press, 2015. 543 p.

SACKS, R.; EASTMAN, C.; LEE, G.; TEICHOLZ, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. 3a. ed. Hoboken: John Wiley & Sons, 2018. 659 p.

SCHWAB, K. The Fourth Industrial Revolution. 1a. ed. [S. l.]: World Economic Forum, 2016. 172 p.

TWILL, J.; BATKER , D.; COWAN , S.; WRIGHT CHAPPELL, T. The Economics of Change: Catalyzing the Investment Shift Toward a Restorative Built Environment. Tacoma: Earth Economics, 2011. 50 p. Disponível em: http://www.cec.org/islandora- gb/fr/islandora/object/islandora%3A1028. Acesso em: 19 jul. 2020.

WINANS, K.; KENDALL, A.; DENG, H. The history and current applications of the circular economy concept. Renewable and Sustainable Energy Reviews, [S. l.], v. 68, p. 825–833, 2017. https://doi.org/10.1016/j.rser.2016.09.123

ZANNI, Mariangela et al. Developing a methodology for integration of whole life costs into BIM processes to assist design decision making. Buildings, [S. l.], v. 9, n. 5, p. 1–21, 2019. https://doi.org/10.3390/buildings9050114

WORLD COMMISSION ON ENVIRONMENT AND DEVELOPMENT (WCED). Our Common Future.

Oxford: Oxford University Press, 1987. Disponível em: https://www.are.admin.ch/are/en/home/sustainable-development/international- cooperation/2030agenda/un-_-milestones-in-sustainable-development/1987--brundtland-report.html. Acesso em: 10 mar. 2020.

WORLD ECONOMIC FORUM (WEF). Shaping the Future of Construction: A Breakthrough in Mindset and Technology. [S.l.]: World Economic Forum, 2016. 63 p. Disponível em: https://www.weforum.org/reports/shaping-the-future-of-construction-a-breakthrough-in-mindset- and- technology. Acesso em: 11 mar. 2020.

Publicado

2021-05-14

Cómo citar

Cruz, V. F., & Góes, T. M. (2021). Contribución del BIM al desarrollo de la Economía Circular en el ambiente construido : una revisión sistemática de la literatura . Paranoá, 14(30). https://doi.org/10.18830/issn.1679-0944.n30.2021.01

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 > >> 

También puede {advancedSearchLink} para este artículo.