Como a energia eólica está contribuindo para o Brasil atingir os compromissos assumidos no Acordo de Paris

Autores

DOI:

https://doi.org/10.18472/SustDeb.v13n3.2022.43656

Palavras-chave:

Acordo de Paris, Setor elétrico, Energia renováve, Energia eólica, Eficiência elétrica

Resumo

O Acordo de Paris foi assinado com o intuito de reduzir as emissões de gases de efeito estufa. O Brasil se comprometeu a aumentar a participação em energias renováveis na matriz elétrica. O objetivo deste estudo é avaliar como a energia eólica está contribuindo para o cumprimento das metas assumidas no acordo. Por meio de uma revisão sistemática da literatura, foram identificados 10 estudos pertinentes e, juntamente com uma análise dos dados disponíveis no Relatório de Balanço Energético Nacional, da Empresa de Pesquisa Energética (EPE), foi possível comparar os dados obtidos no período com as metas estabelecidas e avaliar o sucesso das políticas para o setor no atingimento dos objetivos mencionados. Os resultados demostram que a energia eólica é a fonte renovável que mais se beneficiou dos incentivos ficais e, assim, contribuiu para a expansão da participação da energia renovável na matriz elétrica brasileira.

Downloads

Não há dados estatísticos.

Biografia do Autor

Mário Joel Ramos Júnior, Msc in Industrial Management and Technology, Researcher University Center Senai Cimatec, Salvador, Brazil

Master in Industrial Management and Technology from Senai Cimatec University Center (Bahia). Master in Management and Business Direction from Universidad de Chile with an exchange program at ESCP Madrid Business School. Mechanical Engineer graduated from the Federal University of Bahia with exchange at the University of Passau - Bavaria (Germany) and engineering internship at the Fraunhofer Institute of Production and Technology (RWTH) - Nordheim-Westfallen (Germany). He is currently a PhD student in Industrial Management and Technology and a Researcher at Senai Cimatec's Environment Department.

Paulo Soares Figueiredo, Phd in Business, Associate Professor, Federal University of Bahia, Salvador, Brazil

Ph.D. in Administration from Boston University Questrom School of Business, with a grant from the FULBRIGHT Commission, USA. M.A. in Administration from the School of Economics and Administration, University of São Paulo, Brazil. Bachelor's degree in Mechanical Engineering from Unicamp, Brazil. Researcher at the Núcleo de Pós-Graduação em Administração - NPGA/EAUFBA. Professor and researcher at GETEC (SENAI CIMATEC). Outstanding Teaching Award as a professor during his doctorate at Boston University.

Xisto Lucas Travassos Júnior, Phd in Electrical Engineering, Associate Professor, Federal University of Santa Catarina, Joinville, Brazil

PhD in electrical engineering from École Centrale de Lyon - France (2007). Master in electrical engineering from the Federal University of Santa Catarina - UFSC (2004). Graduated in electrical engineering from UFSC (2002). Also in 2007 he worked as TRANSLOGISTic project manager at the Faculté Polytechnique de Mons (UMONS) in Belgium. Professor at the UFSC Florianópolis Campus. Main areas of interest are: sustainable energy, antennas and propagation, ground penetrating radar and electromagnetic compatibility.

Referências

ABEÉOLICA. Boletim Anual de Geração 2020. São Paulo: Abeeólica, 2021. Available at: https://abeeolica.org.br/ wp-content/uploads/2022/04/PT_Boletim-Anual-de-Geracao_2020.pdf. Accessed on: 6 nov. 2021.

AHMAD, T. et al. Artificial intelligence in sustainable energy industry: status quo, challenges and opportunities. Journal of Cleaner Production, v. 289, p. 125834, Mar. 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.125834.

ALTOÉ, L. et al. Políticas públicas de incentivo à eficiência energética. Estudos Avançados, v. 31, n. 89, p. 285–297, Apr. 2017. DOI: https://doi.org/10.1590/s0103-40142017.31890022.

ANEEL. Atlas de energia elétrica do Brasil. Brasília: Aneel, 2002. Available at: http://www2.aneel.gov.br/arquivos/ pdf/livro_atlas.pdf. Accessed on: 10 may 2022.

Sustainability in Debate - Brasília, v. 13, n.3, p. 15-31, dec/2022 28

ISSN-e 2179-9067

Ramos Júnior et al.

ARANTEGUI, R. L.; JÄGER-WALDAU, A. Photovoltaics and wind status in the European Union after the Paris Agreement. Renewable and Sustainable Energy Reviews, v. 81, p. 2460–2471, Jan. 2018. DOI: https://doi. org/10.1016/j.rser.2017.06.052.

BAYER, B.; BERTHOLD, L.; FREITAS, B. M. R. The Brazilian experience with auctions for wind power: an assessment of project delays and potential mitigation measures. Energy Policy, v. 122, p. 97–117, Nov. 2018. DOI: https://doi. org/10.1016/j.enpol.2018.07.004.

BRASIL. Lei no 9.478, de 6 de agosto de 1997. Dispõe sobre a política energética nacional, as atividades relativas ao monopólio do petróleo, institui o Conselho Nacional de Política Energética e a Agência Nacional do Petróleo e dá outras providências. Diário Oficial da União, 6 Aug. 1997. Available at: http://www.planalto.gov.br/ccivil_03/ leis/l9478.htm. Accessed on: 30 may 2020.

BRASIL. Lei no 10.295, de 17 de outubro de 2001. Dispõe sobre a Política Nacional de Conservação e Uso Racional de Energia e dá outras providências. Diário Oficial da União, 17 Oct. 2001. Available at: http://www.planalto.gov. br/ccivil_03/leis/leis_2001/l10295.htm. Accessed on: 6 jun. 2020.

BRASIL. Lei no 10.428, de 24 de abril de 2002. Abre crédito extraordinário ao Orçamento de Investimento para 2001, em favor de diversas empresas estatais, no valor total de R$ 2.816.630.828,00, e reduz o Orçamento de Investimento das mesmas empresas no valor global de R$ 1.846.971.305,00, para os fins que especifica. Diário Oficial da União, 24 Apr. 2002. Available at: http://www.planalto.gov.br/ccivil_03/leis/2002/l10428.htm. Accessed on: 30 may 2020.

BRASIL. Ministério do Meio Ambiente. Acordo de Paris. Ministério do Meio Ambiente, 2016. Available at: https:// www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris. Accessed on: 20 may 2020.

BRASIL. Ministério de Minas e Energia. Escassez Hídrica e o Fornecimento de Energia Elétrica no Brasil. [S. l.]: Ministério de Minas e Energia, 2021. Available at: https://www.epe.gov.br/sites-pt/sala-de-imprensa/noticias/ Documents/infogr%c3%a1fico.pdf. Accessed on: 29 aug. 2022.

BRASIL. 2016. Pretendida Contribuição Nacionalmente Determinada. Available at: https://antigo.mma.gov.br/ images/arquivo/80108/BRASIL%20INDC%20portugues%20FINAL.pdf. Accessed on: 20 may 2020.

CEBDS. Oportunidade e Desafios das metas da NDC Brasileira para o Setor Empresarial. Brasília: Conselho Empresarial Brasileiro para o Desenvolvimento Sustentável, 2017. Available at: http://biblioteca.cebds.org/ oportunidades-desafios-metasndc. Accessed on: 22 may 2020.

DIÓGENES, J. R. F. et al. Overcoming barriers to onshore wind farm implementation in Brazil. Energy Policy, v. 138, p. 111165, Mar. 2020. DOI: https://doi.org/10.1016/j.enpol.2019.111165.

EPE. Plano Decenal de Expansão de Energia 2031. Brasíla: Empresa de Pesquisa Energética, 2022. Available at: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/Documents/PDE%202031_ RevisaoPosCP_rvFinal_v2.pdf. Accessed on: 7 sep. 2022.

EPE. Balanço Energético Nacional 2021. Brasília: Empresa de Pesquisa Energética, 2021. Available at: https:// www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/ topico-588/BEN_S%C3%ADntese_2021_PT.pdf. Accessed on: 31 oct. 2021.

EPE. Roadmap eólica offshore Brasil. Brasília: Empresa de Pesquisa Energética, 30 Apr. 2020. Available at: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-456/ Roadmap_Eolica_Offshore_EPE_versao_R2.pdf. Accessed on: 28 aug. 2022.

GOMAA, M. R. et al. Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: a practical case study. Energies, v. 12, n. 17, p. 3263, 24 Aug. 2019. DOI: https://doi.org/10.3390/en12173263.

GRUPO DE TRABALHO DA SOCIEDADE CIVIL. V Relatório Luz da Sociedade Civil Agenda 2030 de Desenvolvimento Sustentável Brasil. São Paulo: Instituto Democracia e Sustentabilidade, 23 Apr. 2022. Available at: https://www. idsbrasil.org/wp-content/uploads/2021/07/por_rl_2021_completo_vs_03_lowres.pdf.

GWEC. Global Wind Report. 2021. Global Wind Energy Council. Available at: https://gwec.net/global-wind- report-2021/. Accessed on: 6 nov. 2021.

HAGE, J. A. A. A construção da política energética no Brasil: avanços e impasses em um Estado em desenvolvimento. OIKOS, v. 18, n. 2, p. 66–81, 2019.

HERRERA, M. M.; DYNER, I.; COSENZ, F. Assessing the effect of transmission constraints on wind power expansion in northeast Brazil. Utilities Policy, v. 59, p. 100924, Aug. 2019. DOI: https://doi.org/10.1016/j.jup.2019.05.010.

HÖHNE, N. et al. Emissions: world has four times the work or one-third of the time. v. 579, p. 25–28, 2020. DOI: https://doi.org/10.1038/d41586-020-00571-x.

HOWARD, D. B. et al. The energy-climate-health nexus in energy planning: a case study in Brazil. Renewable and Sustainable Energy Reviews, v. 132, p. 110016, 1 Oct. 2020. DOI: https://doi.org/10.1016/j.rser.2020.110016.

IBGE. Relatório dos Indicadores para os Objetivos de Desenvolvimento Sustentável. 2022. Objetivos de Desenvolvimento Sustentável. Available at: https://odsbrasil.gov.br/relatorio/sintese. Accessed on: 29 aug. 2022.

IEA. Data and Statistics. 2021. International Energy Agency. Available at: https://www.iea.org/data-and-statistics/ data-tables?country=WORLD&energy=Electricity&year=2019. Accessed on: 31 oct. 2021.

JACOBSON, M. Z. et al. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renewable Energy, v. 123, p. 236–248, Aug. 2018. DOI: https://doi.org/10.1016/j.renene.2018.02.009.

KALDELLIS, J. K.; KAPSALI, M. Shifting towards offshore wind energy – Recent activity and future development. Energy Policy, v. 53, p. 136–148, Feb. 2013. DOI: https://doi.org/10.1016/j.enpol.2012.10.032.

LIMA, M. A. et al. Renewable energy in reducing greenhouse gas emissions: reaching the goals of the Paris agreement in Brazil. Environmental Development, v. 33, p. 100504, Mar. 2020. DOI: https://doi.org/10.1016/j. envdev.2020.100504.

LINDOSO, D. P. et al. Monitoring the sustainable development goals at a local level: information transparency on public health (SDG 3) in brazilian municipalities. Sustentabilidade em Debate, v. 12, n. 1, p. 29–58, 7 May 2021. DOI: https://doi.org/10.18472/SustDeb.v12n1.2021.36601.

LÓPEZ-GONZÁLEZ, A. et al. Evaluation of small wind turbines for rural electrification: case studies from extreme climatic conditions in Venezuela. Energy, v. 209, p. 118450, Oct. 2020. DOI: https://doi.org/10.1016/j. energy.2020.118450.

LOZORNIO, E. J. C. et al. Políticas Públicas para o Fomento da Inserção da Energia Eólica na Composição da Matriz Brasileira de Oferta de Energia Elétrica. 2017. XIX ENCONTRO INTERNACIONAL SOBRE GESTÃO EMPRESARIAL E MEIO AMBIENTE, 2017, São Paulo [...]. São Paulo: Universidade de São Paulo: USP, 2017. p. 15. Available at: http://engemausp.submissao.com.br/19/anais/arquivos/467.pdf. Accessed on: 10 jun. 2020.

Sustainability in Debate - Brasília, v. 13, n.3, p. 15-31, dec/2022 30

ISSN-e 2179-9067

Ramos Júnior et al.

LUCENA, J. de A. Y.; LUCENA, K. Â. A. Wind energy in Brazil: an overview and perspectives under the triple bottom line. Clean Energy, v. 3, n. 2, p. 69–84, 25 May 2019. DOI: https://doi.org/10.1093/ce/zkz001.

LUNA, M. A. R. et al. Solar Photovoltaic Distributed Generation in Brazil: the case of Resolution 482/2012. Energy Procedia, v. 159, p. 484–490, Feb. 2019. DOI: https://doi.org/10.1016/j.egypro.2018.12.036.

MARTINS, F. R.; PEREIRA, E. B. Enhancing information for solar and wind energy technology deployment in Brazil. Energy Policy, v. 39, n. 7, p. 4378–4390, Jul. 2011. DOI: https://doi.org/10.1016/j.enpol.2011.04.058.

MICHELS-BRITO, A. et al. The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability. Renewable and Sustainable Energy Reviews, v. 147, p. 111238, Sep. 2021. DOI: https://doi.org/10.1016/j.rser.2021.111238.

MORRISON, G. M. et al. Comparison of low-carbon pathways for California. Climatic Change, p. 13, 2015.

PONTES, N. Brasil se afasta cada vez mais de metas do Acordo de Paris. 12 Dec. 2020. DW Brasil. Available at: https://www.dw.com/pt-br/ex-pot%C3%AAncia-clim%C3%A1tica-brasil-se-afasta-cada-vez-mais-de-metas-do- acordo-de-paris/a-55910741. Accessed on: 17 may 2021.

RAIMUNDO, D. R. et al. Evaluation of greenhouse gas emissions avoided by wind generation in the brazilian energetic matrix: a retroactive analysis and future potential. Resources, Conservation and Recycling, v. 137, p. 270–280, 1 Oct. 2018. DOI: https://doi.org/10.1016/j.resconrec.2018.06.020.

ROCKSTRÖM, J. et al. A roadmap for rapid decarbonization. Science, v. 355, n. 6331, p. 1269–1271, 24 Mar. 2017. DOI: https://doi.org/10.1126/science.aah3443.

THOMAS, J. A. Analysis: with new law, Brazil seeks to boost payments for protecting nature. 25 Mar. 2021. Reuters. Available at: https://www.reuters.com/article/us-brazil-environment-lawmaking-analysis-idUSKBN2BH2WQ. Accessed on: 17 may 2021.

TOLMASQUIM, M. T. et al. Electricity market design and renewable energy auctions: the case of Brazil. Energy Policy, v. 158, p. 112558, Nov. 2021. DOI: https://doi.org/10.1016/j.enpol.2021.112558.

TOLMASQUIM, M. T. Energia Renovável: hidráulica, biomassa, eólica, solar, oceânica. Rio de Janeiro: Empresa de Pesquisa Energética, 2016. Available at: https://www.epe.gov.br/sites-pt/publicacoes-dados- abertos/publicacoes/PublicacoesArquivos/publicacao-172/Energia%20Renov%C3%A1vel%20-%20Online%20 16maio2016.pdf. Accessed on: 15 jun. 2020.

UNDP. Sustainable Development Goals – United Nations Development Programme. 2022. UNDP. [United Nations Development Programme]. Available at: https://www.undp.org/sustainable-development-goals. Accessed on: 29 aug. 2022.

UNFCCC. The Paris Agreement – UNFCCC. 2016. United Nations Framework Convention on Climate Change. Available at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement. Accessed on: 18 may 2020.

VALLEJO-DÍAZ, A. et al. Wind energy potential assessment of selected locations at two major cities in the Dominican Republic, toward energy matrix decarbonization, with resilience approach. Thermal Science and Engineering Progress, v. 32, p. 101313, Jul. 2022. DOI: https://doi.org/10.1016/j.tsep.2022.101313.

ZHANG, J. Analysis of wind characteristics and wind energy potential in complex mountainous region in southwest China. Journal of Cleaner Production, p. 18, 2020.

Downloads

Publicado

2022-12-29

Como Citar

Ramos Júnior, M. J., Figueiredo, P. S., & Travassos Júnior, X. L. (2022). Como a energia eólica está contribuindo para o Brasil atingir os compromissos assumidos no Acordo de Paris. Sustainability in Debate, 13(3), 15–31. https://doi.org/10.18472/SustDeb.v13n3.2022.43656