Case study of a model of local solar radiation potential and discussion on the associated sustainable applications and potentials
DOI:
https://doi.org/10.18472/SustDeb.v11n2.2020.27773Resumen
A transição sustentável para matrizes energéticas mais sustentáveis é uma demanda mundial e atual. Nesse sentido, a modelagem da radiação solar em alta resolução espacial é utilizada para avaliar o potencial de geração fotovoltaica em qualquer tipo de superfície e fornecer informações para planejamento e dimensionamento de sistemas fotovoltaicos. A partir do potencial técnico de geração, pode-se estimar o tempo de retorno do investimento do sistema fotovoltaico e a quantidade de gás carbono que deixou de ser emitido ao adotar a energia fotovoltaica. No contexto quantitativo, o objetivo deste artigo foi abordar brevemente a metodologia técnica e construir um modelo de radiação solar incidente em prédios da EE-IGC-UFMG. No contexto da discussão das aplicações sustentáveis da ferramenta, o objetivo foi tratar de temas relevantes, tais como a construção de modelos de radiação e os potenciais associados, as escalas de aplicação e dificuldades e limitações da modelagem.
Descargas
Citas
AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Resolução Normativa Nº 482, de 17 de Abril de 2012. Disponível em: <http://www.aneel.gov.br/cedoc/ren2012482.pdf>. Acesso em: 09 maio 2019.
AMADO, M.; POGGI, F.; AMADO, A. R. Energy efficient city: a model for urban planning. Sustainable Cities and Society, v. 26, p. 476-485, 2016.
ASIF, M. Urban scale application of solar PV to improve sustainability in the building and the energy sectors of KSA. Sustainability, v. 8, n. 11, p. 1127, 2016.
ASSOULINE, D.; MOHAJERI, N.; SCARTEZZINI, J-L. Quantifying rooftop photovoltaic solar energy potential: a machine learning approach. Solar Energy, v. 141, p. 278-296, 2017.
BERGAMASCO, L.; ASINARI, P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: application to Piedmont Region (Italy). Solar energy, v. 85, n. 5, p. 1041-1055, 2011.
BESSER, A. et al. A Customized Decision Support System for Renewable Energy Application by Housing Association. Sustainability, v. 11, n. 16, p. 4377, 2019.
CAMARGO, L. R. et al. Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Computers, Environment and Urban Systems, v. 52, p. 58-69, 2015.
CAMARGO, L. R.; STOEGLEHNER, G. Spatiotemporal modelling for integrated spatial and energy planning. Energy, Sustainability and Society, v. 8, n. 1, p. 32, 2018.
CASTELLANOS, S.; SUNTER, D. A.; KAMMEN, D. M. Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?. Environmental Research Letters, v. 12, n. 12, p. 125005, 2017.
CHENG, L. et al. Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: methodology, validation, and analysis. ISPRS Journal of Photogrammetry and remote sensing, v. 138, p. 12-29, 2018.
CHOI, Y.; SUH, J.; KIM, S-M. GIS-Based Solar Radiation Mapping, Site Evaluation, and Potential Assessment: a review. Applied Sciences, v. 9, n. 9, p. 1960, 2019.
CHOW, A.; FUNG, A.; LI, S. GIS modeling of solar neighborhood potential at a fine spatiotemporal resolution. Buildings, v. 4, n. 2, p. 195-206, 2014.
CINTRA, J.; NERO, M.; RODRIGUES, D. GNSS/NTRIP service and technique: accuracy tests. Boletim de Ciências Geodésicas, v. 17, n. 2, p. 257-271, 2011.
COLOMINA, I.; MOLINA, P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and remote sensing, v. 92, p. 79-97, 2014.
DAMMALAGE, T. L. et al. Potential accuracy and practical benefits of NTRIP protocol over conventional RTK and DGPS observation methods. Map Asia, v. 29, 2006.
DE WAAL, R.; STREMKE, S. Energy transition: missed opportunities and emerging challenges for landscape planning and designing. Sustainability, v. 6, n. 7, p. 4386-4415, 2014.
DESTHIEUX, G. et al. Solar cadaster of Geneva: a decision support system for sustainable energy management. In: From Science to Society. Springer, Cham, 2018. p. 129-137.
ESCLAPÉS, J. et al. A method to evaluate the adaptability of photovoltaic energy on urban façades. Solar Energy, v. 105, p. 414-427, 2014.
ESCOBAR, R. A. et al. Estimating the potential for solar energy utilization in Chile by satellite-derived data and ground station measurements. Solar Energy, v. 121, p. 139-151, 2015.
FALKNER, R. The Paris Agreement and the new logic of international climate politics. International Affairs, v. 92, n. 5, p. 1107-1125, 2016.
FARIA, T. S. Classificação em área urbana apoiada em imagens aéreas e dados LiDAR. Dissertação (Mestrado) ”“ Universidade Federal de Minas Gerais, 2017, 94p.
FARMER, J. D.; LAFOND, F. How predictable is technological progress? Research Policy, v. 45, n. 3, p. 647-665, 2016.
FONSECA, J. A.; SCHLUETER, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, v. 142, p. 247-265, 2015.
FREITAS, S. et al. Modelling solar potential in the urban environment: state-of-the-art review. Renewable and Sustainable Energy Reviews, v. 41, p. 915-931, 2015.
GIELEN, D.; BOSHELL, F.; SAYGIN, D. Climate and energy challenges for materials science. Nature materials, v. 15, n. 2, p. 117, 2016.
GOODING, J. et al. Solar City Indicator: a methodology to predict city level PV installed capacity by combining physical capacity and socio-economic factors. Solar Energy, v. 95, p. 325-335, 2013.
HOFIERKA, J. et al. The solar radiation model for Open source GIS: implementation and applications. In: Proceedings of the Open source GIS-Grass users conference. 2002. p. 51-70.
HOFIERKA, J.; KAŇUK, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renewable energy, v. 34, n. 10, p. 2206-2214, 2009.
INTERNATIONAL ENERGY AGENCY. Energy Outlook 2018. International Energy Agency Paris, France, 2018.
IZKARA, J. L.; EGUSQUIZA, A.; VILLANUEVA, A. GIS-3D Platform to Help Decision Making for Energy Rehabilitation in Urban Environments. In: IOP Conference Series: earth and environmental science. IOP Publishing, 2019. p. 012122.
IZQUIERDO, S.; RODRIGUES, M.; FUEYO, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy, v. 82, n. 10, p. 929-939, 2008.
JAKICA, N. State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. Renewable and Sustainable Energy Reviews, v. 81, p. 1296-1328, 2018.
JAKUBIEC, J. A.; REINHART, C. F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Solar Energy, v. 93, p. 127-143, 2013.
JANKO, S. A.; ARNOLD, M. R.; JOHNSON, N. G. Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market. Applied Energy, v. 180, p. 37-51, 2016.
KAUSIKA, B. B.; DOLLA, O.; VAN SARK, W. Assessment of policy based residential solar PV potential using GIS-based multicriteria decision analysis: a case study of Apeldoorn, The Netherlands. Energy Procedia, v. 134, p. 110-120, 2017.
KODYSH, J. B. et al. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustainable Cities and Society, v. 8, p. 31-41, 2013.
KRÜGER, A.; KOLBE, T. H. Building analysis for urban energy planning using key indicators on virtual 3D city models ”“ The energy atlas of Berlin. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 39, n. B2, p. 145-150, 2012.
LA GENNUSA, M. et al. A model for predicting the potential diffusion of solar energy systems in complex urban environments. Energy Policy, v. 39, n. 9, p. 5335-5343, 2011.
LEE, M. et al. Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level. Energy, v. 160, p. 213-224, 2018.
LINGFORS, D. et al. Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Applied Energy, v. 205, p. 1216-1230, 2017.
LUDWIG, D.; MCKINLEY, L. Solar Atlas of Berlin-Airborne Lidar in Renewable Energy Applications. GIM Int, v. 24, n. 3, p. 17-22, 2010.
LUKAC, N. et al. Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data. Energy, v. 66, p. 598-609, 2014.
LUKAC, N. et al. Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data. Energy, v. 107, p. 854-865, 2016.
MARTÃN, A. M.; DOMÃNGUEZ, J.; AMADOR, J. Applying LiDAR datasets and GIS based model to evaluate solar potential over roofs: a review. AIMS Energy, v. 3, n. 3, p. 326-343, 2015.
MAVROMATIDIS, G.; OREHOUNIG, K.; CARMELIET, J. Evaluation of photovoltaic integration potential in a village. Solar Energy, v. 121, p. 152-168, 2015.
MELIUS, J.; MARGOLIS, R.; ONG, S. Estimating rooftop suitability for PV: a review of methods, patents, and validation techniques. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2013.
MOUDRÃ, V.; BEKOVÁ, A.; LAGNER, O. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates. Remote Sensing Letters, v. 10, n. 11, p. 1077-1085, 2019.
NINSAWAT, S.; HOSSAIN, M. Identifying potential area and financial prospects of rooftop solar photovoltaics (PV). Sustainability, v. 8, n. 10, p. 1068, 2016.
NOWACKA, A.; REMONDINO, F. Geospatial data for energy efficiency and low carbon cities ”“ overview, experiences and new perspectives. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018.
PENG, J.; LU, L.; YANG, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and sustainable energy reviews, v. 19, p. 255-274, 2013.
PEREIRA, E. B. et al. Atlas brasileiro de energia solar. São José dos Campos: Inpe, 2006.
POLO, J.; PEREZ, R. Solar radiation modeling from satellite imagery. In: Solar Resources Mapping. Springer, Cham, 2019. p. 183-197.
RADZI, A.; DROEGE, P. Governance tools for local energy autonomy. In: Climate Change Governance. Springer, Berlin, Heidelberg, 2013. p. 227-242.
REMONDINO, F. et al. Low-cost and open-source solutions for automated image orientation ”“ A critical overview. In: Euro-Mediterranean Conference. Springer, Berlin, Heidelberg, 2012. p. 40-54.
ROBERTS, M. B.; COPPER, J.; BRUCE, A. Analysis of Rooftop Solar Potential on Australian Residential Buildings. In: Asia Pacific Solar Research Conference. 2018.
SANTOS, T. et al. Applications of solar mapping in the urban environment. Applied Geography, v. 51, p. 48-57, 2014.
SARMIENTO, N. et al. A solar irradiation GIS as decision support tool for the Province of Salta, Argentina. Renewable Energy, v. 132, p. 68-80, 2019.
SCHUFFERT, S. et al. Quality assessment of roof planes extracted from height data for solar energy systems by the EAGLE platform. Remote Sensing, v. 7, n. 12, p. 17016-17034, 2015.
SZABÓ, S. et al. Automated registration of potential locations for solar energy production with Light Detection And Ranging (LiDAR) and small format photogrammetry. Journal of Cleaner Production, v. 112, p. 3820-3829, 2016.
SZEWCZYK, M.; SZEWCZYK, L. Modelling of real solar radiation spatial distribution as a tool for solar energy cadastre in the cities. Energy & Environment, v. 29, n. 2, p. 204-215, 2018.
TENEDÓRIO, J. A. et al. Remote sensing from unmanned aerial vehicles for 3D urban modelling: case study of Loulé, Portugal. In: Back to the Sense of the City: international monograph book. Centre de Política de Sòl i Valoracions, 2016. p. 1118-1128.
TONKIN, T.; MIDGLEY, N. Ground-control networks for image based surface reconstruction: an investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sensing, v. 8, n. 9, p. 786, 2016.
TONKOSKI, R.; TURCOTTE, D.; EL-FOULY, T. H. M. Impact of high PV penetration on voltage profiles in residential neighborhoods. IEEE Transactions on Sustainable Energy, v. 3, n. 3, p. 518-527, 2012.
UNITED NATIONS. Paris agreement 2015. Disponível em: <https://unfccc.int/sites/default/files/english_paris_agreement.pdf>. Acesso em: 12 set. 2019.
WAN, C. et al. Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power and Energy Systems, v. 1, n. 4, p. 38-46, 2015.
WEBER, G.; DETTMERING, D.; GEBHARD, H. Networked transport of RTCM via internet protocol (NTRIP). In: A Window on the Future of Geodesy. Springer, Berlin, Heidelberg, 2005. p. 60-64.
WIGINTON, L. K.; NGUYEN, H. T.; PEARCE, J. M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Computers, Environment and Urban Systems, v. 34, n. 4, p. 345-357, 2010.
WIJERATNE, W. M. P. U. et al. Design and development of distributed solar PV systems: Do the current tools work? Sustainable cities and society, 2018.
YANG, D. et al. History and trends in solar irradiance and PV power forecasting: a preliminary assessment and review using text mining. Solar Energy, v. 168, p. 60-101, 2018.
ZINK, R. et al. Photogrammetric point clouds for GIS-based high-resolution estimation of solar radiation for roof-top solar systems. In: Surface Models for Geosciences. Springer, Cham, 2015. p. 293-305.
Descargas
Publicado
Versiones
- 2020-09-02 (2)
- 2020-08-31 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Sustentabilidade em Debate
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
La presentación de la(s) obra(s) científica(s) original(es) por parte de los autores, como titulares de los derechos de autor de los textos enviados a la revista, de conformidad con la Ley 9.610/98, implica la cesión de derechos de autor de publicaciones impresas y/o digitales a la Revista de Sustenibilidad en Debate de los artículos aprobados para fines de publicación, en un único número de la Revista, autorizando también que la(s) obra(s) científica(s) aprobada(s) se divulguen de forma gratuita, sin ningún tipo de reembolso de derechos de autor, a través del sitio web de a Revista, para leer, imprimir y/o descargar el archivo de texto, a partir de la fecha de aceptación para publicación. Por lo tanto, los autores, al presentar los artículos a la Revista y, en consecuencia, la libre cesión de derechos de autor relacionados con el trabajo científico presentado, son plenamente conscientes de que no serán remunerados por la publicación de los artículos en la revista.Â
La Revista está licenciada bajo una licencia no comercial y sin derivaciones Creative Commons (No permite la realización de obras derivadas) 3.0 Brasil, con el propósito de difundir conocimientos científicos, como se indica en el sitio web de la publicación, que permite el intercambio del texto y el reconocimiento de su autoría y publicación original en esta revista.
Los autores pueden asumir contratos adicionales por separado, para la distribución no exclusiva de las obras publicadas en la revista Sustenibilidad en Debate (por ejemplo, en un capítulo de libro), siempre que se indique que los textos se publicaron originalmente en esta revista y que se menciona el DOI correspondiente. Se permite y incentiva a los autores a publicar y distribuir su texto online después de su publicación (por ejemplo, en repositorios institucionales o en sus páginas personales).Â
Los autores aceptan expresamente los términos de esta Declaración de Derechos de Autor, que se aplicará a la presentación si es publicada por esta Revista.