Closing the Matter and Energy Cycle in the Sugar/Alcohol Sector

Authors

  • Jessé Morais Pacheco
  • Debora Nayar Hoff

DOI:

https://doi.org/10.18472/SustDeb.v4n2.2013.9379

Keywords:

Industrial Symbiosis, Sugar and ethanol complex, Industrial Ecology, Closing Cycle

Abstract

The sustainable development must be seen from the understanding of the multiple relation that
occurs between the natural environment and the other actors of the system. In agroindustrial
systems, this is a serious issue because of the close dependence between production processes
and natural elements. The objective of this paper is to organize, from other published studies,
the main energy and material flows already identified within the sugarcane sector. Then, it
present an overview of the degree of closing cycle regarding that sector. This work is an descriptive
research that uses secondary data and the results demonstrates: i) the high rates of reutilization
of bagasse of sugar cane and water allows the cogeneration of energy and the low capitation of
water from natural resources; ii) the possibility of treatment for by-products allows the
reutilization in other processes, as biodigestion and fertigation.

Downloads

Download data is not yet available.

Author Biographies

Jessé Morais Pacheco

Graduação em Economia, Universidade Federal de Uberlândia, 2011.
Mestre em Economia, Universidade Federal de Uberlândia, 2013.
Uberlândia, Minas Gerais, Brasil.

Debora Nayar Hoff

Graduação em Economia, Universidade do Planalto Catarinense, 1994;
Mestre em Economia Industrial, Universidade Federal de Santa Catarina, 2000;
Doutora em Agronegócios, Universidade Federal do Rio Grande do Sul, 2008.
Professora Adjunta do Instituto de Economia da Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.

References

ALLENBY, B. R.. Achieving sustainable development through industrial ecology.
International Environmental Affair, v. 4, n. 1, p. 56-68, 1992.
ALVARENGA, R. P.; QUEIROZ, T. R.. Produção mais limpa e aspectos ambientais na
indústria sucroalcooleira. International Workshop Advances in Cleaner Production.
Key elements for a sustainable world: energy, water and climate change. São Paulo,
2009.
ANA; FIESP; UNICA; CTC. Manual de Conservação e reúso de água na agroindústria
sucroenergética. Brasília: ANA, 2009.
ANDREWS, C. J. Putting Industrial Ecology into place ”“ evolving roles for planners.
Journal of the American Planning Association, v. 65, n. 4, p. 364-375, 1999.
AYRES, R. U. Industrial metabolism: theory and policy. In: ALLENBY, B.R.; RICHARDS,
D. J.. The Greening of industrial ecosystems. Washington: National Academy Press,
1994.
BNDES; CGEE. Bioetanol de cana-de-açúcar: energia para o desenvolvimento
sustentável. Rio de Janeiro: BNDES, 2008.
CECHIN, A. VEIGA, J. E.. O fundamento central da Economia Ecológica. In: May, P.
(org.). Economia do Meio Ambiente. São Paulo: Editora Campus, 2009.
CETESB. A produção mais limpa (P+L) no setor sucroalcooleiro - informações gerais.
São Paulo, 2002. Disponível em: http://www.agencia.cnptia.embrapa.br. Acesso em:
25 jul. 2013.
CHERTOW, M. R.. Industrial Symbiosis: Literature and taxonomy. Annu. Rev. Energy
Environ., v. 25, n.1, p. 313”“337, 2000.
CHERTOW, M. R.. Industrial symbiosis. Encyclopedia of Energy. v. 3, n. 1, p. 407-
415, 2004.
CHERTOW, M. R.. “Uncovering” industrial symbiosis. Journal of Industrial Ecology,
v. 11, n. 1, p. 11-30, 2007.
COHEN-ROSENTHAL. What is eco-industrial development?. 2003. Disponível em:
<www.greenleaf-publishing.com>. Acesso em: 15 jul. 2013.
CONAB. Geração Termoelétrica com a Queima do Bagaço de Cana-de-Açúcar no
Brasil: Análise do Desempenho da Safra 2009-2010. Brasília: CONAB, 2011.
Disponível em: <http://www.conab.gov.br>. Acesso em: 25 jul. 2013.
DESPEISSE, M.; BALL, P. D.; EVANS, S.; LEVERS, A.. Industrial Ecology at factory level
”“ a conceptual model. Journal of Cleaner Production, v. 31, p.30-39, 2012.
EGRI, C.P.; PINFIELD, L.T.. As organizações e a biosfera: ecologia e meio ambiente.
In: CLEGG, S. T.; NORD, W. R; HARDY, C. Handbook de Estudos Organizacionais. São
Paulo: Atlas, 2001.
FROSCH, R. A.; GALLOPOULOS, N. E.. Strategies for manufacturing. Scientific
American. n.261, p. 144-152, 1989.
GEORGESCU-ROEGEN, N.. The entropy law and the economic process. Londres:
Harvard University Press, 1971.
GRAEDEL, T. Industrial Ecology: definition and implementation. In SOCOLOW, R. et
al. Industrial Ecology and global change. 1994.
JELINSKI, L.W.; GRAEDEL, T.E.; LAUDISE, R. A.; MCDALL, D.W.; PATTEL, C. K. N.
Industrial ecology: concepts and approaches. Proceeding of the National Academy
of Sciences of the United States of America. v. 89., p. 793-797, 1992.
KORHONEN, J.. Four ecosystem principles for an industrial ecosystem. Journal of
Cleaner Production. v. 9, n. 3 p. 253-259, 2001a.
KORHONEN, J.. Co-production of heat and power: an anchor tenant of a regional
industrial ecosystem. Journal of Cleaner Production. v. 9., n. 6, p. 509-517, 2001b.
KRONES, J.. The best of both worlds: a beginner’s guide to industrial ecology. 2007.
LIFSET, R.; GRAEDEL, T. E.. Industrial Ecology: goals and definitions. In: A handbook
of industrial ecology. 2002. Disponível em: http://planet.botany.uwc.ac.za. Acesso
em: 11 jul. 2013.
NEVES, M. F.; CONEJERO, M. A.. Estratégias para a cana no Brasil: um negócio classe
mundial. São Paulo: Atlas, 2010.
SOUZA, E.L.; MACEDO, I.C. (coord.). Etanol e bioeletricidade: A cana-de-açúcar no
futuro da matriz energética. União da Indústria de Cana-de-Açúcar (UNICA). 2009.

Published

2013-12-23

How to Cite

Pacheco, J. M., & Hoff, D. N. (2013). Closing the Matter and Energy Cycle in the Sugar/Alcohol Sector. Sustainability in Debate, 4(2), 215–236. https://doi.org/10.18472/SustDeb.v4n2.2013.9379

Issue

Section

Artigos