This is an outdated version published on 2020-08-31. Read the most recent version.

Case study of a model of local solar radiation potential and discussion on the associated sustainable applications and potentials

Authors

DOI:

https://doi.org/10.18472/SustDeb.v11n2.2020.27773

Abstract

The demand for a sustainable transition to energy matrices of lower environmental impact is global and current. In this sense, the modelling of solar radiation in high spatial resolution is used to assess the potential of photovoltaic generation on any type of surface and provide information for the planning and dimensioning of photovoltaic systems. From the technical potential of generation, it is possible to estimate the systems payback time and the avoided greenhouse gas emissions when adopting photovoltaic energy. In the quantitative context, the objective of this article was to briefly address the technical methodology and build a model of solar radiation of EE-IGC-UFMG buildings. In the context of sustainable applications of the tool, the objective was to address relevant topics, such as the construction of radiation models and the associated potentials, the application scales, and the difficulties and limitations of the modelling.

Downloads

Download data is not yet available.

Author Biographies

Marcelo Antonio Nero, Universidade Federal de Pernambuco, Recife, PE, Brasil

Prof. Adjunto C, Nível 02, do Departamento de Cartografia da Universidade Federal de Minas Gerais (UFMG), credenciado no Programa de Pós-Graduação em Análise e Modelagem de Sistemas Ambientais (linha de pesquisa de qualidade temática e orientação de mestrados e co-orientação de doutorado), orientador de alunos de iniciação científica. Além disso, é vice-coordenador no programa de pós-graduação latu sensu em Geprocessamento. Prof. Formador I do Programa de pós-graduação latu sensu de Gestão de Instituições Federais de Educação Superior, subárea de Tecnologias, Universidade Aberta do Brasil (UAB), desde julho de 2019. Adicionalmente, é co-orientador de aluno de mestrado no programa de de Pós-Graduação em Engenharia Civil/Informações Espaciais da Universidade Federal de Viçosa (UFV) desde 2017.

Daniel Henrique Carneiro Salim, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

Engenheiro Ambiental e Mestrando em Análise e Modelagem de Sistemas Ambientais na Universidade Federal de Minas Gerais.

Caio Cesar de Sousa Mello, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Mestre em Saneamento, Meio Ambiente e Recursos Hídricos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Rafael Tarantino Amarante, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Mestrando em Análise e Modelagem de Sistemas Ambientais, Especialista em Geoprocessamento e Engenheiro Geólogo.

Bráulio Magalhães Fonseca, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

É Professor do Departamento de Cartografia da UFMG. Possui Doutorado e Mestrado em Análise Ambiental pela UFMG, com desenvolvimento de pesquisas utilizando Sistemas de Informações Geográficas e Geodesign aplicados ao Planejamento Urbano e Cidades Inteligentes. É Líder do Grupo de Pesquisa do CNPq de Longa Duração em Cidades Inteligentes. Foi o idealizador, fundador e atual coordenador do Laboratório de Geotecnologias ”“ GeotecLab do CPMTC/IGC/UFMG (Laboratório Top 5 da primeira edição do Out Lab), especializado em utilização de drones para mapeamento. Possui mais de dez anos de experiência de mercado, com participação em grandes projetos de planejamento territorial, hidroenergia, mineração e logística, à exemplo dos projetos S11D, UEH Belo Monte, Apolo, duplicação da Ferrovia de Carajás.

Plínio da Costa Temba, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Eng.Cartógrafo (UERJ/1989); Mestrado em Eng.de Transportes (USP/1995) e Doutorado em Cadastro Técnico Multifilnalitário e Gestão Territorial (UFSC/2008).

References

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Resolução Normativa Nº 482, de 17 de Abril de 2012. Disponível em: <http://www.aneel.gov.br/cedoc/ren2012482.pdf>. Acesso em: 09 maio 2019.

AMADO, M.; POGGI, F.; AMADO, A. R. Energy efficient city: a model for urban planning. Sustainable Cities and Society, v. 26, p. 476-485, 2016.

ASIF, M. Urban scale application of solar PV to improve sustainability in the building and the energy sectors of KSA. Sustainability, v. 8, n. 11, p. 1127, 2016.

ASSOULINE, D.; MOHAJERI, N.; SCARTEZZINI, J-L. Quantifying rooftop photovoltaic solar energy potential: a machine learning approach. Solar Energy, v. 141, p. 278-296, 2017.

BERGAMASCO, L.; ASINARI, P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: application to Piedmont Region (Italy). Solar energy, v. 85, n. 5, p. 1041-1055, 2011.

BESSER, A. et al. A Customized Decision Support System for Renewable Energy Application by Housing Association. Sustainability, v. 11, n. 16, p. 4377, 2019.

CAMARGO, L. R. et al. Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Computers, Environment and Urban Systems, v. 52, p. 58-69, 2015.

CAMARGO, L. R.; STOEGLEHNER, G. Spatiotemporal modelling for integrated spatial and energy planning. Energy, Sustainability and Society, v. 8, n. 1, p. 32, 2018.

CASTELLANOS, S.; SUNTER, D. A.; KAMMEN, D. M. Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?. Environmental Research Letters, v. 12, n. 12, p. 125005, 2017.

CHENG, L. et al. Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: methodology, validation, and analysis. ISPRS Journal of Photogrammetry and remote sensing, v. 138, p. 12-29, 2018.

CHOI, Y.; SUH, J.; KIM, S-M. GIS-Based Solar Radiation Mapping, Site Evaluation, and Potential Assessment: a review. Applied Sciences, v. 9, n. 9, p. 1960, 2019.

CHOW, A.; FUNG, A.; LI, S. GIS modeling of solar neighborhood potential at a fine spatiotemporal resolution. Buildings, v. 4, n. 2, p. 195-206, 2014.

CINTRA, J.; NERO, M.; RODRIGUES, D. GNSS/NTRIP service and technique: accuracy tests. Boletim de Ciências Geodésicas, v. 17, n. 2, p. 257-271, 2011.

COLOMINA, I.; MOLINA, P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and remote sensing, v. 92, p. 79-97, 2014.

DAMMALAGE, T. L. et al. Potential accuracy and practical benefits of NTRIP protocol over conventional RTK and DGPS observation methods. Map Asia, v. 29, 2006.

DE WAAL, R.; STREMKE, S. Energy transition: missed opportunities and emerging challenges for landscape planning and designing. Sustainability, v. 6, n. 7, p. 4386-4415, 2014.

DESTHIEUX, G. et al. Solar cadaster of Geneva: a decision support system for sustainable energy management. In: From Science to Society. Springer, Cham, 2018. p. 129-137.

ESCLAPÉS, J. et al. A method to evaluate the adaptability of photovoltaic energy on urban façades. Solar Energy, v. 105, p. 414-427, 2014.

ESCOBAR, R. A. et al. Estimating the potential for solar energy utilization in Chile by satellite-derived data and ground station measurements. Solar Energy, v. 121, p. 139-151, 2015.

FALKNER, R. The Paris Agreement and the new logic of international climate politics. International Affairs, v. 92, n. 5, p. 1107-1125, 2016.

FARIA, T. S. Classificação em área urbana apoiada em imagens aéreas e dados LiDAR. Dissertação (Mestrado) ”“ Universidade Federal de Minas Gerais, 2017, 94p.

FARMER, J. D.; LAFOND, F. How predictable is technological progress? Research Policy, v. 45, n. 3, p. 647-665, 2016.

FONSECA, J. A.; SCHLUETER, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, v. 142, p. 247-265, 2015.

FREITAS, S. et al. Modelling solar potential in the urban environment: state-of-the-art review. Renewable and Sustainable Energy Reviews, v. 41, p. 915-931, 2015.

GIELEN, D.; BOSHELL, F.; SAYGIN, D. Climate and energy challenges for materials science. Nature materials, v. 15, n. 2, p. 117, 2016.

GOODING, J. et al. Solar City Indicator: a methodology to predict city level PV installed capacity by combining physical capacity and socio-economic factors. Solar Energy, v. 95, p. 325-335, 2013.

HOFIERKA, J. et al. The solar radiation model for Open source GIS: implementation and applications. In: Proceedings of the Open source GIS-Grass users conference. 2002. p. 51-70.

HOFIERKA, J.; KAŇUK, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renewable energy, v. 34, n. 10, p. 2206-2214, 2009.

INTERNATIONAL ENERGY AGENCY. Energy Outlook 2018. International Energy Agency Paris, France, 2018.

IZKARA, J. L.; EGUSQUIZA, A.; VILLANUEVA, A. GIS-3D Platform to Help Decision Making for Energy Rehabilitation in Urban Environments. In: IOP Conference Series: earth and environmental science. IOP Publishing, 2019. p. 012122.

IZQUIERDO, S.; RODRIGUES, M.; FUEYO, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy, v. 82, n. 10, p. 929-939, 2008.

JAKICA, N. State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. Renewable and Sustainable Energy Reviews, v. 81, p. 1296-1328, 2018.

JAKUBIEC, J. A.; REINHART, C. F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Solar Energy, v. 93, p. 127-143, 2013.

JANKO, S. A.; ARNOLD, M. R.; JOHNSON, N. G. Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market. Applied Energy, v. 180, p. 37-51, 2016.

KAUSIKA, B. B.; DOLLA, O.; VAN SARK, W. Assessment of policy based residential solar PV potential using GIS-based multicriteria decision analysis: a case study of Apeldoorn, The Netherlands. Energy Procedia, v. 134, p. 110-120, 2017.

KODYSH, J. B. et al. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustainable Cities and Society, v. 8, p. 31-41, 2013.

KRÜGER, A.; KOLBE, T. H. Building analysis for urban energy planning using key indicators on virtual 3D city models ”“ The energy atlas of Berlin. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 39, n. B2, p. 145-150, 2012.

LA GENNUSA, M. et al. A model for predicting the potential diffusion of solar energy systems in complex urban environments. Energy Policy, v. 39, n. 9, p. 5335-5343, 2011.

LEE, M. et al. Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level. Energy, v. 160, p. 213-224, 2018.

LINGFORS, D. et al. Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Applied Energy, v. 205, p. 1216-1230, 2017.

LUDWIG, D.; MCKINLEY, L. Solar Atlas of Berlin-Airborne Lidar in Renewable Energy Applications. GIM Int, v. 24, n. 3, p. 17-22, 2010.

LUKAC, N. et al. Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data. Energy, v. 66, p. 598-609, 2014.

LUKAC, N. et al. Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data. Energy, v. 107, p. 854-865, 2016.

MARTÃN, A. M.; DOMÃNGUEZ, J.; AMADOR, J. Applying LiDAR datasets and GIS based model to evaluate solar potential over roofs: a review. AIMS Energy, v. 3, n. 3, p. 326-343, 2015.

MAVROMATIDIS, G.; OREHOUNIG, K.; CARMELIET, J. Evaluation of photovoltaic integration potential in a village. Solar Energy, v. 121, p. 152-168, 2015.

MELIUS, J.; MARGOLIS, R.; ONG, S. Estimating rooftop suitability for PV: a review of methods, patents, and validation techniques. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2013.

MOUDRÃ, V.; BEKOVÁ, A.; LAGNER, O. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates. Remote Sensing Letters, v. 10, n. 11, p. 1077-1085, 2019.

NINSAWAT, S.; HOSSAIN, M. Identifying potential area and financial prospects of rooftop solar photovoltaics (PV). Sustainability, v. 8, n. 10, p. 1068, 2016.

NOWACKA, A.; REMONDINO, F. Geospatial data for energy efficiency and low carbon cities ”“ overview, experiences and new perspectives. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018.

PENG, J.; LU, L.; YANG, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and sustainable energy reviews, v. 19, p. 255-274, 2013.

PEREIRA, E. B. et al. Atlas brasileiro de energia solar. São José dos Campos: Inpe, 2006.

POLO, J.; PEREZ, R. Solar radiation modeling from satellite imagery. In: Solar Resources Mapping. Springer, Cham, 2019. p. 183-197.

RADZI, A.; DROEGE, P. Governance tools for local energy autonomy. In: Climate Change Governance. Springer, Berlin, Heidelberg, 2013. p. 227-242.

REMONDINO, F. et al. Low-cost and open-source solutions for automated image orientation ”“ A critical overview. In: Euro-Mediterranean Conference. Springer, Berlin, Heidelberg, 2012. p. 40-54.

ROBERTS, M. B.; COPPER, J.; BRUCE, A. Analysis of Rooftop Solar Potential on Australian Residential Buildings. In: Asia Pacific Solar Research Conference. 2018.

SANTOS, T. et al. Applications of solar mapping in the urban environment. Applied Geography, v. 51, p. 48-57, 2014.

SARMIENTO, N. et al. A solar irradiation GIS as decision support tool for the Province of Salta, Argentina. Renewable Energy, v. 132, p. 68-80, 2019.

SCHUFFERT, S. et al. Quality assessment of roof planes extracted from height data for solar energy systems by the EAGLE platform. Remote Sensing, v. 7, n. 12, p. 17016-17034, 2015.

SZABÓ, S. et al. Automated registration of potential locations for solar energy production with Light Detection And Ranging (LiDAR) and small format photogrammetry. Journal of Cleaner Production, v. 112, p. 3820-3829, 2016.

SZEWCZYK, M.; SZEWCZYK, L. Modelling of real solar radiation spatial distribution as a tool for solar energy cadastre in the cities. Energy & Environment, v. 29, n. 2, p. 204-215, 2018.

TENEDÓRIO, J. A. et al. Remote sensing from unmanned aerial vehicles for 3D urban modelling: case study of Loulé, Portugal. In: Back to the Sense of the City: international monograph book. Centre de Política de Sòl i Valoracions, 2016. p. 1118-1128.

TONKIN, T.; MIDGLEY, N. Ground-control networks for image based surface reconstruction: an investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sensing, v. 8, n. 9, p. 786, 2016.

TONKOSKI, R.; TURCOTTE, D.; EL-FOULY, T. H. M. Impact of high PV penetration on voltage profiles in residential neighborhoods. IEEE Transactions on Sustainable Energy, v. 3, n. 3, p. 518-527, 2012.

UNITED NATIONS. Paris agreement 2015. Disponível em: <https://unfccc.int/sites/default/files/english_paris_agreement.pdf>. Acesso em: 12 set. 2019.

WAN, C. et al. Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power and Energy Systems, v. 1, n. 4, p. 38-46, 2015.

WEBER, G.; DETTMERING, D.; GEBHARD, H. Networked transport of RTCM via internet protocol (NTRIP). In: A Window on the Future of Geodesy. Springer, Berlin, Heidelberg, 2005. p. 60-64.

WIGINTON, L. K.; NGUYEN, H. T.; PEARCE, J. M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Computers, Environment and Urban Systems, v. 34, n. 4, p. 345-357, 2010.

WIJERATNE, W. M. P. U. et al. Design and development of distributed solar PV systems: Do the current tools work? Sustainable cities and society, 2018.

YANG, D. et al. History and trends in solar irradiance and PV power forecasting: a preliminary assessment and review using text mining. Solar Energy, v. 168, p. 60-101, 2018.

ZINK, R. et al. Photogrammetric point clouds for GIS-based high-resolution estimation of solar radiation for roof-top solar systems. In: Surface Models for Geosciences. Springer, Cham, 2015. p. 293-305.

Published

2020-08-31

Versions

How to Cite

Antonio Nero, M., Salim, D. H. C., Mello, C. C. de S., Tarantino Amarante, R., Fonseca, B. M., & Temba, P. da C. (2020). Case study of a model of local solar radiation potential and discussion on the associated sustainable applications and potentials. Sustainability in Debate, 11(2), 173–207. https://doi.org/10.18472/SustDeb.v11n2.2020.27773