Effect of chlorides and of internal humidity of concretes on surface and volumetric electrical resistivity:

influence on the specification of durable concrete

Authors

DOI:

https://doi.org/10.18830/1679-09442025v18e53272

Keywords:

Resistivity, Electrical resistivity, Volumetric resistivity, Chlorides, Concrete, Humidity

Abstract

The objective is to evaluate the effect of chlorides and the variation in internal humidity of concrete on apparent surface electrical resistivity (Re), volumetric resistivity (Rv) and the relationship between them. Concretes with different water/binder ratios (a/l) (0.40, 0.55 and 0.70) and with the addition of silica fume were studied. Different probe spacings were considered (38 and 50 mm) for Re. The concretes were also subjected to wetting and drying cycles in a solution containing chlorides and water desorption and absorption. As a result, concretes with lower w/l ratios and with the addition of silica fume showed the highest resistivity values in general (before and after the presence of chlorides). Chlorides reduced resistivity values in the first cycle. The resistivity was changed when the moisture content of the concrete reduced from 100% to up to 97%. High correlations were obtained between Re with 38 mm and 50 mm probes (R2 above 0,9560). Different coefficients of determination (R²) were obtained during the water desorption and absorption process for Rv and humidity (%). The resistivity technique was sensitive to the presence of chlorine ions and the difference between the concretes in the compressive strength, composition, porosity and humidity.

Downloads

Download data is not yet available.

Author Biographies

Letícia Alves da Silva, Universidade Federal de Goiás, Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil, Escola de Engenharia Civil e Ambiental

Student of environmental and sanitary engineering at EECA/UFG, with scientific initiation and internship at Labitecc and in civil engineering companies.

Antônio Carlos de Assis Leonel, ATC Engenharia e Consultoria LTDA, ATC, Brasil.

Holds a Technical degree in Building Construction from the Federal Institute of Education, Science and Technology of Goiás (2013); a Graduate degree in Civil Engineering from the Pontifical Catholic University of Goiás (2019); a Master's degree in Civil Construction from PPG-GECON - UFG (2022); and a Specialization (MBA) in Construction Management in Civil Construction from Faculdade UniBF (2019) and in Engineering Expert Assessments from DALMASS (2020). He has worked as a Professional Education Instructor at the National Industrial Learning Service - SENAI GO, teaching technical and professional qualification courses in the area of ​​civil construction in person and remotely. He is currently an Adjunct Professor at UniAraguaia, teaching subjects in the Civil Engineering and Architecture courses. In teaching, he also works as a professor and Coordinator of postgraduate courses in Construction Management at DALMASS Educacional. He has worked in civil construction since 2011 and 2019 as a civil engineer in the area of ​​civil construction with the development of executive projects of architecture, structural, hydrosanitary and electrical installations of residential, commercial and industrial works. He has also worked with the preparation of shoring assembly projects and technical monitoring of formwork and containment systems for vertical works in Goiânia. He has also worked for 6 years on the technical staff of the LABITECC laboratory (UFG), working in research development and technological innovation in the area of ​​materials, construction processes, inspections and non-destructive testing in reinforced concrete structures. He is currently the technical director of ATC Engenharia e Consultoria, where he works with contract management and execution of road maintenance actions with GOINFRA, as well as developing civil engineering projects, providing consultancy in construction management, and carrying out inspections, surveys and engineering expertise. He has experience in the area of ​​Civil Construction, with an emphasis on science and technology of construction materials, technological testing of concrete and mortars, durability, performance and inspections of concrete structures.

Andrielli Morais de Oliveira de Oliveira, Universidade Federal de Goiás, Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil, Escola de Engenharia Civil e Ambiental.

Holds a PhD in civil engineering with experience in durability of cementitious composite materials and mechanical behavior, including "creep" from PEC/COPPE/UFRJ (2015). She has expertise and works in the theme of durability and performance of concrete structures, construction materials and supplementary cementitious materials, fibrous cementitious materials, chlorides, corrosion of reinforcements, investigation and monitoring techniques for corrosion and electrochemical corrosion parameters, application of microscopic and mesoscopic techniques for analysis of materials, watertightness and waterproofing in constructions with interest in materials, testing, construction systems, design and production controls, improvement of existing materials and development of new materials - performance biases, durability, sustainability, innovation and technology and performance standards in the themes of durability and watertightness. He has been a professor at the School of Civil and Environmental Engineering at the Federal University of Goiás since 2018, teaching undergraduate courses in civil, environmental and sanitary engineering, the specialization course in civil construction and the master's and doctorate courses of the Postgraduate Program in Structures, Geotechnics and Civil Construction at UFG.

References

AMERICAN SOCIETY FOR TESTING MATERIALS. ASTM G 57: Standard test method field measurement of soil resistivity using the Wenner four-electrode method, West Conshohocken, United States of America: ASTM, 2020.

ALVES L.; OLIVEIRA, A.M. Avaliação Experimental de Parâmetros de Condicionamento nos Resultados de Resistividade Elétrica Superficial Aparente e Volumétrica do Concreto: Durabilidade e Qualidade Estrutural-Efeito da Adição Mineral de Sílica Ativa e Influência de Relação Água/Ligante. Relatório de pesquisa de iniciação científica, 2023.

ANDRADE, C. BUJÁK, R. Effects of some mineral additions to Portland cement on reinforcement corrosion, Cement and concrete Research, v. 53, p. 59–67, 2013. DOI: https://doi.org/ 10.1016/j.cemconres.2013.06.004.

ARAGONCILLO, M. M; CLEARY, D. B; LOMBOY, G. R. Estimating the permeability of porous aggregate concretes using electrical resistivity-based tests, Construction and Building Materials, v. 364, p. 129909, 2023. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129909

ARAÚJO, E. C.; MACIOSKI, G.; MEDEIROS, M. H. F. Concrete surface electrical resistivity: Effects of sample size, geometry, probe spacing and SCMs, Construction and Building Materials, v. 324, p.126659, 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126659

ARAÚJO, C. C.; MEIRA, G. R. Correlation between concrete strength properties and surface electrical resistivity, Revista IBRACON de Estruturas e Materiais, v. 15, n. 1, 2022. DOI: https://doi.org/10.1590/S1983-41952022000100003

AZARSA, P.; GUPTA, R. Electrical resistivity of concrete for durability evaluation: a review, Advances in Materials Science and Engineering, 2017, pp. 30. DOI: https://doi.org/10.1155/2017/8453095

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5738: Moldagem e cura de corpos-de-prova cilíndricos ou prismáticos de concreto. Rio de Janeiro, 2016.

_______. NBR 5739: Concreto – Ensaios de Compressão de corpos de prova cilíndricos: Método de ensaio. Rio de Janeiro: ABNT, 2018.

_______. NBR 7211: Agregados para concreto - requisitos. Rio de Janeiro, 2022.

_______. NBR 7215: Cimento Portland - Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, 2019.

_______. NBR 7218: Agregados — Determinação do teor de argila em torrões e materiais friáveis. Rio de Janeiro: ABNT, 2010.

_______. NBR 8522: Concreto endurecido - Determinação dos Módulos de Elasticidade e de Deformação: Parte 1 Módulos Estáticos à Compressão. Rio de Janeiro: ABNT, 2021. 20 p.

_______. NBR 9204: Concreto endurecido - Determinação da resistividade elétrico-volumétrica: Método de ensaio. Rio de Janeiro: ABNT, 2012.

_______. NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro: ABNT, 2009.

_______. NBR NM 11768: Aditivos químicos para concreto de cimento Portland Parte 1: Requisitos. Rio de Janeiro, 2021.

_______. NBR 16889: Concreto - Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 2020.

_______. NBR 16697: Cimento Portland - Requisitos. Rio de Janeiro, 2018a. 12p.

_______. NBR 16972: Agregados – Determinação da massa unitária e volume de vazios. Rio de Janeiro, 2021.

_______. NBR NM 16917: Agregados graúdo - Determinação da densidade e da absoção de água. Rio de Janeiro, 2021.

_______. NBR NM 16916: Agregados miúdo - Determinação da densidade e da absoção de água. Rio de Janeiro, 2021.

_______. NBR NM 16973: Agregados - Determinação do material fino que passa através da peneira 75 um, por lavagem. Rio de Janeiro, 2021.

_______. NBR NM 17054: Agregados – Determinação da composição granulométrica: método de ensaio. Rio de Janeiro, 2022.

BATISTA, A. G.; PICANÇO, M. S. Utilização de resíduos de bauxita como filler, adicionado de polipropileno do resíduo de garrafão de água mineral no concreto betuminoso usinado a quente. RESEARCH, SOCIETY AND DEVELOPMENT, v. 12, p. e23312641871-14, 2023. DOI: http://dx.doi.org/10.54033/cadpedv21n7-183

BALESTRA, C. E. T.; REICHERT, T. A.; PANSERA, W. A.; SAVARIS, G. Evaluation of chloride ion penetration through concrete surface electrical resistivity of field naturally degraded structures present in marine environment, Construction and Building Materials, v. 230, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116979

BANG, J. B; YIM, H. J. Segregation evaluation of concrete pavements under excessive vibration using electrical resistivity measurement, Case Studies in Construction Materials, V. 19, 2023.DOI: https://doi.org/10.1016/j.cscm.2023.e02300

BJEGOVIĆ, D. et al. Test Methods for Concrete Durability Indicators. In: BEUSHAUSEN, H.; FERNANDEZ LUCO, L. (Eds.). Performance-Based Specifications and Control of Concrete Durability. RILEM State-of-the-Art Reports. Dordrecht: Springer Netherlands, 2016. v. 18, p. 51–105.

BROOMFIELD, J.P. Corrosion of steel in concrete: understanding, investigation and repair. New York: E&FN Spon, 1997.

CASCUDO, O. O Controle da Corrosão em Armaduras de Concreto: Inspeção e Técnicas Eletroquímicas. Goiânia, Editora UFG/ São Paulo, Pini, 1997.

CASCUDO, O.; CARASEK, H. Ação da carbonatação no concreto. In: Geraldo C. Isaia. (Org.). Concreto: Ciência e Tecnologia. 1 ed. São Paulo: IBRACON, v. 1, 2011, pp. 849-887.

CASCUDO, OSWALDO; TEODORO, R.; OLIVEIRA, A. M. DE; CARASEK, H. Effect of different metakaolins on chloride-related durability of concrete. ACI MATERIALS JOURNAL, v. 118, p. 3-14, 2021.DOI: https://doi.org/10.14359/51732634

CASCUDO, O. ; OLIVEIRA, A. P. ; VIEIRA, J. D. ; OLIVEIRA, A.M. Study of Pore Solution, Porosity and Microstructure of Ternary Cement Matrices: A Holistic and Strategic View of Concrete Durability. Journal of Materials in Civil Engineering, v. 37, n. n4 p.040250261-18, 2025. DOI: http://dx.doi.org/10.1061/jmcee7.mteng-18439

CHEN, C. T.; CHANG J.J.; YEIH, W. C. The effects of specimen parameters on the resistivity of concrete, Construction and Building Materials, v. 71, 2014, pp. 35–43. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.009

CHEYTANI, M.; CHAN, S.L.I. The applicability of the Wenner method for resistivity measurement of concrete in atmospheric conditions, Case Studies in Construction Material, v. 15, 2021. DOI: https://doi.org/10.1016/j.cscm.2021.e00663

ESAKER, M; HAMZA, O; ELLIOTT, D. Monitoring the bio-self-healing performance of cement mortar incubated within soil and water using electrical resistivity, Construction and Building Materials, v. 393, p. 132109, 2023. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132109

GOMES-PIMENTEL, M.; GOMES, C. F. F.; SILVA, M.R. C.; VIVEIROS, D. S.; PICANÇO, M. S. RESÍDUO DE MINÉRIO DE MANGANÊS DA REGIÃO AMAZÔNICA E O SEU POTENCIAL USO COMO MATERIAL SUPLEMENTAR AO CIMENTO PORTLAND. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 18., 2020. Anais [...]. Porto Alegre: ANTAC, 2020. p. 1–8. DOI: 10.46421/entac.v18i.691.

HE, R.; NANTUNG, T.; OLEK, J.; LU, N. Field study of the dielectric constant of concrete: A parameter less sensitive to environmental variations than electrical resistivity, Journal of Building Engineering, v. 74, p. 106938, 2023. DOI: https://doi.org/10.1016/j.jobe.2023.106938

JI, H.; TIAN, Y.; FU, C.; YE, H. Transfer learning enables prediction of steel corrosion in concrete under natural environments, Cement and Concrete Composites, v. 148, p. 105488, 2024. DOI: https://doi.org/10.1016/j.cemconcomp.2024.105488

JIN, M.; JIANG, L.; ZHU, Q. Monitoring chloride ion penetration in concrete with different mineral admixtures based on embedded chloride ion selective electrodes, Construction and Building Materials, v. 143, p. 1–15, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.131

KESSLER, R. J.; POWERS, R. G.; PAREDES, M. A. Resistivity Measurements of Water Saturated Concrete as an Indicator of Permeability, Paper presented at the CORROSION 2005, Houston, Texas, April 2005.

LAYSSI, H.; ALIZADEH, A. R; SALEHI, M. Electrical Resistivity of Concrete, Concrete International, p. 41-46, 2015.

LARSEN, C. Electrical resistivity of concrete - Part II: Influence of moisture content and temperature, 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering, 11-13 September 2006, Quebec City, Canada.

LEONEL. A.C.A.; OLIVEIRA, A.M.; CASCUDO, O. Interação da resistividade elétrica com esclerometria e velocidade de propagação de ondas ultrassônicas. Paranoá. v.17, p.e49960, 2024. DOI: https://doi.org/10.18830/1679-09442024v17e49960

LOPES, R.C.; A.M.; CASCUDO, O. A Technical and Technological Engineering View of Correlation of Non-Steady State Chloride Diffusion Test Correlated to an Adapted Colorimetric Method, 2023. (submetido à avaliação).

LUBECK, A. GASTALDINI, A. L. G.; BARIN, D. S.; SIQUEIRA, H. Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag, Cement Concrete & Composites, v. 34, p. 392–399, 2012. DOI: https://doi.org/10.1016/j.cemconcomp.2011.11.017

LUJÁN, V. F. MALDONADO-GARCÍA, M. A. M, QUERO, V. G. J. MONTES-GARCÍA, P. Reliability of electrical resistivity on the long-term monitoring of concrete, Construction and Building Materials, v. 18, p.101154, 2023.DOI: https://doi.org/10.1016/j.rineng.2023.101154

MARTINS, B.G.; OLIVEIRA, A. M.; CASCUDO, O. Avaliação do Comportamento Reológico das Matrizes Cimentícias com a Adição de Nanotubos de Carbono: uma Revisão Sistemática da Literatura (RSL) - Parte 1. REEC - Revista Eletrônica de Engenharia Civil, v. 19, p. 210-223, 2023. DOI: https://doi.org/10.5216/reec.v19i1.76626

MARTINS, B. G.; OLIVEIRA, A. M.; CASCUDO, O. Avaliação do Comportamento Reológico das Matrizes Cimentícias com a Adição de Nanotubos de Carbono: uma Revisão Sistemática da Literatura (RSL) - Parte 2. REEC - Revista Eletrônica de Engenharia Civil, v. 19, p. 210-224, 2023. DOI: https://doi.org/10.5216/reec.v19i1.76627

MAO, Y.; HU, X.; ALENGARAM, U. J.; CHEN, W.; SHI, C. Use of carbonated recycled cement paste powder as a new supplementary cementitious material: A critical review, Cement and Concrete Composites, v. 154, p.105783, 2024. DOI: https://doi.org/10.1016/j.cemconcomp.2024.105783

MARQUEZ, J. M. S. Influence of Saturation and Geometry on Surface Electrical Resistivity Measurements, Masters dissertation. Applied Science Building Engineering, Concordia University, Montreal, Quebec, Canada, 2015. https://spectrum.library.concordia.ca/id/eprint/980090/1/Sanchez_M.A.Sc_F2015.pdf

MCPOLIN, D.O.; BASHEER, P.A.M.; LONG, A.E.; GRATTAN, K.T.V.; SUN, T. New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials, Journal of Materials Civil Engineering, v. 19, p. 936–946, 2007. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007) 19:11(936)

MCPOLIN, D.O.; BASHEER, P.A.M.; LONG, A.E. Carbonation and pH in mortars manufactured with supplementary cementitious materials, Journal of Materials Civil Engineering, v. 21, p. 217–225, 2009. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2009) 21:5 (217).

MEDEIROS, M. H. F. D. Estudo de variáveis que influenciam nas medidas de resistividade de estruturas de concreto armado. 2001. Tese de doutorado. Escola Politécnica, Universidade de São Paulo. São Paulo, Brasil.

MEDEIROS, C. L. Estudo da Permeabilidade do Concreto por Diferentes Métodos e sua Contribuição no Campo dos Indicadores de Durabilidade. Escola de Engenharia Civil e Ambiental, Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás – UFG, Goiânia, 2023.

MEDEIROS, M. H. F. de; LOPES, R. C.; REAL, L. V.; RIVAROLA, G. B.; OLIVEIRA, A. M.; O.; CASCUDO, O. Efeito do tipo de cimento e de materiais cimentícios suplementares na resistividade elétrica superficial do concreto, Ambiente Construído, v. 25, 2025, pp. e140952.

MEDEIROS-JUNIOR, R. A.; MUNHOZ, G. S.; MEDEIROS, S.H.F. Correlations between water absorption, electrical resistivity and compressive strength of concrete with different contents of pozzolana, Revista de la Asociación Latinoa Americana de Control de Calidad, Patología y Recuperación de la Construcción, v. 9, n. 2, p. 152-166, 2019. DOI: https://doi.org/10.21041/ra.v9i2.335

MELARA E. K. TRENTIN, P. O. PEREIRA, C. MEDEIROS JUNIOR, R. A. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data, Construction and Building Materials, v. 322, p. 126490, 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126490

MENDES, M. V. A. S. Avaliação das propriedades de transporte de massa de concretos contendo adições minerais. Escola de Engenharia Civil e Ambiental, Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás – UFG, Goiânia, 2009.

MILLARD, S. Wenner Reinforced concrete resistivity measurement techniques, Proceedings of the Institution of Civil Engineers, v. 91, pp. 71-88, 1991. DOI: https://doi.org/10.1680/iicep.1991.13583

MINAGAWA, H.; MIYAMOTO, S.; KURASHIGUE, I.; HISADA, M. Appropriate geometrical factors for four-probe method to evaluate electrical resistivity of concrete specimens, Construction and Building Materials, v. 374, p. 130784, 2023. https://doi.org/10.1016/j.conbuildmat.2023.130784,

OLIVEIRA, A.M.; CASCUDO, O. Effect of mineral additions incorporated in concrete on thermodynamic and kinetic parameters of chloride-induced reinforcement corrosion. Construction and Building Materials, v. 192, p. 467-477, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.100

OLIVEIRA, A. M.; FERREIRA, R. A. R.; MARTINS FILHO, P. C. Production of Silica Gel from Waste Metal Silica Residue. Materials Letters, v. 275, p. 1-6, 2020. DOI: https://doi.org/10.1016/j.matlet.2020.128125

OLIVEIRA, A. M.; SILVA, C. A.; CASCUDO, O.; CARDOSO, T. C. Influência do Tipo de Adição Mineral em Misturas Binárias e Ternárias no Ecorr, Rp, icorr e EIS de Concretos Expostos à Condição Agressiva Contendo Cloretos. Revista de Engenharia da Universidade Católica de Petrópolis - REUCP, v. 16, p. 46-57, 2022. Disponível: https://seer.ucp.br/seer/index.php/REVCEC/article/view/2181

OLIVEIRA, A. M.; OLIVEIRA, A. P. ; VIEIRA, J. D. ; NEVES JR., A. ; CASCUDO, O. Study of the Development of Hydration of Ternary Cement Pastes Using X-ray Computed Microtomography, XRD-Rietveld Method, TG/DTG, DSC, Calorimetry and FTIR Techniques. Journal of Building Engineering, v. 64, p. 1-17, 2023. DOI: https://doi.org/10.1016/j.jobe.2022.105616

OLIVEIRA, A. P.; CASCUDO, O.; OLIVEIRA, A. M. Efeito da Sílica Ativa e da Nanossílica em Materiais Cimentícios - uma Revisão da Literatura para Futuras Pesquisas. TECNIA - Revista de Educação, Ciência e Tecnologia do IFG, v. 8, p. 161-186, 2023. Disponível: file:///C:/Users/andri/Downloads/v8n1-09-artigo%20(1).pdf

PIRO, N. S. MOHAMMED, A. HAMAD, S. M. Electrical resistivity measurement, piezoresistivity behavior and compressive strength of concrete: A comprehensive review, Construction and Building Materials, v. 36, p. 106573, 2023. DOI: https://doi.org/10.1016/j.mtcomm.2023.106573

PIRES, P.F. Estudo avançado de carbonatação em concreto contendo adições minerais. Escola de Engenharia Civil e Ambiental, Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás – UFG, Goiânia, 2016.

POLDER, R.B. Test methods for onsite measurement of resistivity of concrete – a RILEM TC-154 technical recommendation, Construction and Building Materials, v. 15, 2001, p. 125-131. DOI: https://doi.org/10.1016/S0950-0618(00)00061-1

RAMEZANIANPOUR, A.A.; PILVAR, A.; MAHDIKHANI, M.; MOODI, F. Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength, Construction and Building Materials, v. 25, p. 2472–2479, 2011.DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.069

RIBEIRO, D. V.; DIAS, C.; SILVA, A. Concreto com gradação funcional: gradação na porosidade para o aumento da durabilidade frente à carbonatação. Ambiente Construído, v. 24, 2024. Disponível em: https://seer.ufrgs.br/index.php/ambienteconstruido/article/view/134936.

ROBLES, K. P. GUCUNSKI, N. KEE, S.H. Evaluation of steel corrosion-induced concrete damage using electrical resistivity measurements, Construction and Building Materials, v. 411, p. 134512, 2024. DOI:https://doi.org/10.1016/j.conbuildmat.2023.134512

SAHA, A.; TONMOY, T. M.; SOBUZ, M.M. H.R.; ADITTO, F. A.; MANSOUR, W. Assessment of mechanical, durability and microstructural performance of sulphate-resisting cement concrete over Portland cement in the presence of salinity. Construction and Building Materials, v. 420, 2024. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135527

SANCHEZ MARQUEZ, J. M. Influence of Saturation and Geometry on Surface Electrical Resistivity Measurements. Thesis. Department of Building, Civil and Environmental Engineering. Concordia University Montreal, Quebec, Canada, June, 2015.

SANTOS, A.F.S. Estudo de parâmetros físico-químicos da solução do poro de argamassas com adições minerais e sua contribuição para a durabilidade. Dissertação (Mestrado) – Universidade Federal de Goiás, Escola de Engenharia Civil, 2023.

SANTOS, J. R.; OLIVEIRA, A. M.; CASCUDO, O. Estudo das Propriedades no Estado Fresco e Endurecido de Concretos com Adições Minerais: Contribuição por Meio de Meta-Análise, Mapeamento e Revisão Sistemática de Literatura para Delineamento de Futuras Pesquisas no Tema. REVISTA DE ENGENHARIA E PESQUISA APLICADA, v. 8, p. 50-60, 2023.

SANTOS, M.A.; OLIVEIRA, A.P.; OLIVEIRA, A.M. Um Estudo da Perspectiva do Uso de Resíduo Industrial de Silício como Adição Mineral em Matrizes Cimentícias: Origem, Processamento e Propriedades. Revista de Engenharia da Universidade Católica de Petrópolis - REUCP, v. 15, p. 103-118, 2021. Disponível em: https://seer.ucp.br/seer/index.php/REVCEC/article/view/2182

SATHIPARAN, N; JEYANANTHAN, P.; SBRAMANIAM, D. N. Surface response regression and machine learning techniques to predict the characteristics of pervious concrete using non-destructive measurement: Ultrasonic pulse velocity and electrical resistivity. Measurement, v. 225, 2024. DOI: https://doi.org/10.1016/j.measurement.2023.114006

SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A Practical Guide to Microstructural Analysis of Cementitious Materials, New York: CRC Press Taylor & Francis Group, 2016.

SILVA, K.R.M.; FERNANDEZ, O.J.C.; CUNHA, R.R.; PICANÇO, M.S. O potencial da utilização de resíduos de celulose, lama de cal e cinza volante, da Amazônia, Brasil, como materiais cimentícios. REVISTA CARIBEÑA DE CIENCIAS SOCIALES, v. 13, p. e3911-17, 2024. DOI:http://dx.doi.org/10.55905/rcssv13n5-007

SILVA, L.S.; PICANÇO, M.S. Análise investigativa sobre o uso de resíduo de caulim para a produção de compósitos cimentícios. REVISTA CARIBEÑA DE CIENCIAS SOCIALES, v. 12, p. 1397-1426, 2023. DOI:http://dx.doi.org/10.55905/rcssv12n3-023

SMITH, K.M.; SCHOKKER, A.J.; TIKALSKY, P.J. Performance of supplementary cementitious materials in concrete resistivity and corrosion monitoring evaluations, Materials Journal, v. 101, p. 385– 390, 2004. DOI: https://doi.org/10.14359/13424

SENGUL, O. Use of electrical resistivity as an indicator for durability, Construction and Building Materials, v. 73, p. 434– 441, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.077

SENGUL, O.; GJORV, O.E. Effect of embedded steel on electrical resistivity measurements on concrete structures, ACI Materials Journal, v. 106, 2009, p. 11–18.DOI: https://doi.org/10.14359/56311

SNV - Schweizerische Normen-Vereinigung - SN 505 262/1*SIA 262/1. Betonbau – Ergänzende Festlegungen. Standard by Schweizerische Normen-Vereinigung,13oed., 52 pages, 2013 (in German).

TORRENT, R. J. A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Materials and Structures, v. 25, n. 6, p. 358–365, 1992.DOI: https://doi.org/10.1007/BF02472595

YASEEN, N. Exploring the potential of sugarcane bagasse ash as a sustainable supplementary cementitious material: Experimental investigation and statistical analysis, Results in Chemistry, v. 10, p.101723, 2024. DOI: https://doi.org/10.1016/j.rechem.2024.101723.

YIM, H. J; BAE, Y. H; KIM, J. H. Method for evaluating segregation in self-consolidating concrete using electrical resistivity measurements, Construction and Building Materials, v. 232, p. 117283, 2020. DOI:https://doi.org/10.1016/j.conbuildmat.2019.117283

Published

2025-04-22

How to Cite

Alves da Silva, L., Leonel, A. C. de A., & de Oliveira, A. M. de O. (2025). Effect of chlorides and of internal humidity of concretes on surface and volumetric electrical resistivity: : influence on the specification of durable concrete. Paranoá, 18, e53272. https://doi.org/10.18830/1679-09442025v18e53272

Issue

Section

Technology, Environment and Sustainability

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.