Análise comparativa da resistência à tração na flexão e à compressão de argamassa enriquecida com nanotubos de carbono
DOI:
https://doi.org/10.18830/1679-09442025v18e53203Palavras-chave:
Nanotubos de carbono, Tração na flexão, Compressão, Argamassa nanoestruturadaResumo
Este estudo investiga a influência da adição de nanotubos de carbono não tratados (NTC) nas propriedades de consistência, resistência à compressão e à tração na flexão de corpos de prova cilíndricos (NBR 7215:2019) e prismáticos (NBR 13279:2005) produzidos com argamassa enriquecida com NTC. Também é analisada a compatibilidade entre os resultados de resistência à compressão obtidos por duas metodologias distintas. Análises morfológicas dos NTC e das argamassas foram realizadas por Microscopia Eletrônica de Varredura. A incorporação de NTC reduziu a consistência do produto fresco e a resistência à compressão dos corpos prismáticos. Contudo, as resistências à tração na flexão dos corpos prismáticos e à compressão dos corpos cilíndricos não apresentaram variações significativas. A alta variabilidade nos valores de resistência dos corpos de prova com NTC sugere uma dispersão não homogênea dos nanotubos. A variabilidade na resistência à compressão dos corpos prismáticos também foi atribuída ao procedimento da norma, que exige ensaio após a ruptura por flexão.
Downloads
Referências
ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13276: Argamassa para assentamento e revestimento de paredes e tetos – Determinação do índice de consistência. Rio de Janeiro, 2016.
ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13279: Argamassa para assentamento e revestimento de paredes e tetos – Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro, 2005.
ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: Cimento Portland – Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, 2019.
BAI, S.; JIANG, L.; Xu N.; JIN M.; JIANG, S. Improvement of Mechanical and Electrical Properties of Graphene/Cement Composite due to Enhanced Graphene Dispersion through the Addition of Silica Fume, Construction and Building Materials, v. 164, p. 433-441, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.176.
CARVALHO, J. C .L.; COSTAL, G. Z.; DE MORAIS, E. A.; OLIVEIRA, C. E. M.; SIQUEIRA, J. S.; DA SILVA, E. E.; OLIVEIRA, C. A. S.; FILHO, F. M.; SILVA, G. J. B.; GERALDO, V. Synthesis and application of carbon nanotubes grown directly on pozzolanic clay. Journal of Nanoparticle Research, v. 25, n. 186, 2023. DOI: https://doi.org/10.1007/s11051-023-05822-2.
CHAIPANICH, A.; NOCHAIVA, T.; WONGKEO, W.; TORKITTIKUL, P. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Materials Science and Engineering: A, v. 527, n. 4-5, p. 1063–1067, 2010. DOI: https://doi.org/10.1016/j.msea.2009.09.039.
CHANG, C.; HSU, I.; AYKOL, M.; HUNG, W.; CHEN, C.; CRONIN, S. B. A New Lower Limit for the Ultimate Breaking Strain of Carbon Nanotubes, ACS Nano, v. 4, n. 9, p. 5095-5100, 2010. DOI: https://doi.org/10.1021/nn100946q.
COSTAL, G. Z.; CALDERÓN-MORALES, B. R. S.; CARVALHO, J. C. L.; SILVA, E. E.; MORAIS, E. A.; MACHADO, L. F.; OLIVEIRA, C. A. S.; MOURA FILHO, F.; GERALDO, V. CNT grown in situ from iron ore tailings: simple dispersion and environmental sustainability, Journal of Nanoparticle Research, v. 25, n. 199, 2023. DOI: https://doi.org/10.1007/s11051-023-05846-8.
DANOGLIDIS, P. A.; KONSTA-GDOUTOS, M. S.; GDOUTOS, E. E.; SHAH, S. P. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars, Construction and Building Materials, v. 120, p. 265-274, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.049.
GERALDO, V.; OLIVEIRA, S.; SILVA, E. E.; OLIVEIRA, C. A. S.; CUNHA, R. M. A.; OLIVEIRA, R. F. P.; OLIVEIRA, C. E. M.; MORAIS, E. A. Synthesis of carbon nanotubes on sand grains for mortar reinforcement, Construction and Building Materials, v. 252, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119044.
HAWREEN, A.; BOGAS, J. A.; DIAS, A. P. S. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Construction and Building Materials, v. 168, p. 459-470, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.146.
IIJIMA, S. Helical microtubules of graphitic carbon. Nature, v. 354, n. 6348, p. 56-58, 1991. DOI: https://doi.org/10.1038/354056a0.
JANG, S.H.; KAWASHIMA, S.; YIN, H. Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials, v. 9(4), n. 220, 2016 DOI: https://doi.org/10.3390/ma9040220.
KANG, S. T. K.; SEO, J. Y.; PARK, S. H. The characteristics of CNT/Cement composites with acid-treated MWCNTs, Advances in Materials Science and Engineering, v. 2015, n. 1, 2015. DOI: http://dx.doi.org/10.1155/2015/308725.
LI, G.; WANG, P.; ZHAO, X. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites, Cement Concrete Comp. v. 29, n. 5, p. 377-382, 2007. DOI: https://doi.org/10.1016/j.cemconcomp.2006.12.011.
LIU, Y.; ZHONG, X.; REZA MOHAMMADIAN, H. Role of carbon nanotubes in reinforcing the interfacial transition zone and impermeability of concrete under different water-to-cement ratios. Construction and Building Materials, v. 272, p. 649-656, 2023; DOI: https://doi.org/10.1016/j.aej.2023.04.025.
MACLEOD, A. J. N.; FEHERVARI, A.; GATES, W. P.; GARCEZ, E. O.; ALDRIDGE, L. P. COLLINS, F. Enhancing fresh properties and strength of concrete with a pre-dispersed carbon nanotube liquid admixture. Construction and Building Materials, v.247, n. 118524, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118524.
MANZUR, T.; YAZDANI, N.; EMON, M.; BASHAR, A. Potential of carbon nanotube reinforced cement composites as concrete repair material, Journal of Nanomaterials, v. 2016, n.1, p. 1–10, 2016.DOI: https://doi.org/10.1155/2016/1421959
MAKAR, J.; MARGESON, J.; LUH, J. Carbon nanotube/cement composites-early results and potential application. Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, p. 1-10, Vancouver, 2005.
MARCONDES, C. G. N.; MEDEIROS, M. H. F.; MARQUES FILHO, J.; HELENE, P. Nanotubos de carbono em concreto de cimento Portland: Influência da dispersão nas propriedades mecânicas e na absorção de água. Alconpat, v. 5, n. 2., p. 97-114, 2015. Disponível em: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-68352015000200097&lng=es&tlng=pt. Acesso em 29 set. 2024.
MONTEIRO, A. R. Dispersão mecânica de NTCs de carbono com cimento Portland. 2018. f. 156. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Florianópolis, 2018.
NEVILLE, A. M.; BROOKS, J. J. Tecnologia do concreto, Porto Alegre: Bookman, 2ª ed, 2013.
RASHAD, A. M. Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials, Construction. Building. Materials, v. 153, pp. 81–101, 2017 DOI: 10.1016/j.conbuildmat.2017.07.089.
RIBEIRO, A. V. S.; SILVA, J. M.; GLEIZE, P. J. P. Análise da dispersão de NTCs de carbono de paredes múltiplas com diferentes aditivos dispersantes, Revista Matéria, v.27, n.3, 2022. DOI: https://doi.org/10.1590/1517-7076-RMAT-2022-0063
RIBEIRO, A. V. S.; GUINDANI, E. N.; GLEIZE, P. J. P. Analysis of Portland cement consumption reduction by using functionalized multiwalled carbon nanotubes in mortars. Structures and Materials Journal, v.17, n.2, 2024. DOI: https://doi.org/10.1590/S1983-41952024000200004.
SONG, C.; HONG, G.; CHOI, S. Effect of dispersibility of carbon nanotubes by silica fume on material properties of cement mortars: Hydration, pore structure, mechanical properties, self-desiccation, and autogenous shrinkage. Construction and Building Materials, v. 265, p. 120318, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120318.
SOUSA, I. P. S. Obtenção de nanossílica funcionalizada visando o uso como aditivo em misturas cimentícias. Dissertação (mestrado) – Universidade Federal de Goiás. Goiânia, 2017.
XIE, X.; MAI, Y.; ZHOU, X. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science and Engineering R, v. 49, n. 4, p. 89 – 112, 2005. DOI: https://doi.org/10.1016/j.mser.2005.04.002.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Paranoá

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista. http://creativecommons.org/licenses/by/4.0
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).