Artificial Intelligence Applications for Document Management: Experimentations, Potentialities, and Challenges
DOI:
https://doi.org/10.26512/rici.v18.n1.2025.56534Keywords:
Artificial intelligence, Document management, Bibliographic revision, BibliometricsAbstract
Since 2022, with the launch of ChatGPT, Artificial Intelligence (AI) has gained prominence, popularity, and applicability across various sectors. Document Management (DM) is among the domains that can benefit from this computational solution. In this context, this study seeks to determine how AI can be employed in document management. The overall objective is to analyze the applicability of Artificial Intelligence to Document Management. More specifically, it aims to identify scientific literature addressing the intersection between AI and DM; to identify relevant works, authors, and groups for studies involving AI and DM; to identify AI methods, techniques, and applications for document management; and to outline theoretical frameworks, perspectives, and research trends. To this end, a multimethod approach is adopted for reviewing the scientific literature. The procedures consist of four phases. In the first phase, a search was conducted in the Scopus database for the period from 2013 to 2023 using the query: ("document management" OR "records management" OR "electronic document management") AND "artificial intelligence". In the second phase, the data collected from Scopus were analyzed with the VosViewer tool to perform a quantitative and bibliometric analysis. In the third phase, the titles, abstracts, and keywords of the articles retrieved from Scopus and Consensus were examined to select a valid bibliography for the topic under study. After applying inclusion and exclusion criteria, the selected articles were read in full during the fourth phase of the project, which involved Content Analysis (CA). Additionally, the Consensus tool, an AI-based academic research platform, was employed to supplement the review based on the project’s research question. As a result, the study presents a bibliometric analysis of 363 works identified in Scopus, including assessments of co-occurrence, citation, and co-citation patterns, as well as the qualitative analysis of 26 articles. A publication peak was observed in 2023, reflecting a rising trend since 2017, particularly in the United States, with healthcare being a notable area of focus. The categorization of articles also revealed approaches, technologies, potentialities, and challenges associated with employing AI in the field of Document Management, thus providing a roadmap for those interested in further investigations on this topic.
Downloads
References
Baron, J. R.; Payne, N. Dark archives and edemocracy: Strategies for overcoming access barriers to the public record archives of the future. Proceedings of the 7th International Conference for E-Democracy and Open Government, CeDEM 2017, 3–11, 2017. https://doi.org/10.1109/CeDEM.2017.27.
Bellucci, E.; Venkatraman, S.; Stranieri, A. Online dispute resolution in mediating EHR disputes: a case study on the impact of emotional intelligence. Behaviour and Information Technology, v. 39, n. 10, 1124–1139, 2020. https://doi.org/10.1080/0144929X.2019.1645209.
Belov, I. Automation of Electronic Document Management Systems Functions by Means of Artificial Intelligence Technologies. Herald of an Archivist, n. 1, 2017. https://doi.org/10.28995/2073-0101-2022-3-772-783.
Bernardini, M.; Morettini, M.; Romeo, L.; Frontoni, E.; Burattini, L. Early temporal prediction of type 2 diabetes risk condition from a general practitioner electronic health record: a multiple instance boosting approach. Artificial Intelligence in Medicine, n. 105, 101847, 2020. https://doi.org/10.1016/j.artmed.2020.101847.
Bhatt, P. C.; Kumar, V.; Lu, T.-C. Identifying technology trends for blockchain applications in industry 4.0 domain: A patent perspective. 2021 IEEE International Conference on Social Sciences and Intelligent Management, SSIM 2021. https://doi.org/10.1109/SSIM49526.2021.9555213.
Borges Junior, E. A inteligência artificial seria mesmo artificial? Uma releitura do conceito de inteligência a partir das noções de extensão e de conectividade. Palabra Clave, v. 27, n. 1, e27111, 2024. https://doi.org/10.5294/pacla.2024.27.1.11.
Boudjemadi, R.; Jamila, M.; Lunn, J.; Aljumaili, W. The implementation of AI in health and medicine: Electronic Health Records Web based on integration of Logistic Regression Model for Diabetes Type 2 prediction. In 2021 14th International Conference on Developments in eSystems Engineering (DeSE) (p. 168-173). IEEE, 2021. https://doi.org/10.1109/DeSE54285.2021.9719368.
Buss, C.; Salm Junior, J. F.; Prado, J. M. K. do; Ardigo, J. D. A regulamentação no uso da Inteligência Artificial para o tratamento de dados no contexto da Ciência da Informação. Ciência da Informação em Revista, v. 11, e15315, 2024. https://doi.org/10.28998/cirev.2024v11e15315.
Cameron, S., Franks, P., & Hamidzadeh, B. Positioning Paradata: A Conceptual Frame for AI Processual Documentation in Archives and Recordkeeping Contexts. Journal on Computing and Cultural Heritage, v. 16, n. 4, 2023. https://doi.org/10.1145/3594728.
Caroprese, L.; Veltri, P.; Vocaturo, E.; Zumpano, E. Deep learning techniques for electronic health record analysis. 2018 9th International Conference on Information, Intelligence, Systems and Applications, IISA 2018. https://doi.org/10.1109/IISA.2018.8633647.
Chigwada, J. P.; Tsvuura, G. Handbook of Research on Information and Records Management in the Fourth Industrial Revolution. In: Handbook of Research on Information and Records Management in the Fourth Industrial Revolution. 2021. https://doi.org/10.4018/978-1-7998-7740-0.
Dai, W.; Brisimi, T. S.; Adams, W. G.; Mela, T.; Saligrama, V.; Paschalidis, I. C. Prediction of hospitalization due to heart diseases by supervised learning methods. International Journal of Medical Informatics, v. 84, n. 3, p. 189-197, 2015. https://doi.org/10.1016/j.ijmedinf.2014.10.002.
Duan, Y; Edwards, J.; Dwivedi, Y. Artificial intelligence for decision making in the era of Big Data - evolution, challenges and research agenda. International Journal of Information Management, v. 48, p. 63-71, 2019. https://doi.org/10.1016/J.IJINFOMGT.2019.01.021.
Duell, J.; Fan, X.; Burnett, B.; Aarts, G.; Zhou, S.-M. A comparison of explanations given by explainable artificial intelligence methods on analyzing electronic health records. BHI 2021 - 2021 IEEE EMBS International Conference on Biomedical and Health Informatics, Proceedings. 2021. https://doi.org/10.1109/BHI50953.2021.9508618.
Ferreira, F.; Gandomi, A.; Cardoso, R. Artificial Intelligence Applied to Stock Market Trading: A Review. IEEE Access, v. 9, p. 30898-30917, 2021. https://doi.org/10.1109/ACCESS.2021.3058133.
Fontoura, R. V; Villalobos, A. P. de O. Interfaces entre a Ciência da Informação e Inteligência Artificial: o uso de um chat inteligente. Ciência Da Informação Em Revista, v. 9, n. 1/3, p. 1–15, 2023. https://doi.org/10.28998/cirev.2022v9n1/3f.
Fountas, S.; Carli, G.; Sørensen, C. G.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Tisserye, B. A. Farm management information systems: Current situation and future perspectives. Computers and electronics in Agriculture, n. 115, p. 40-50, 2015. https://doi.org/10.1016/j.compag.2015.05.011.
Gayathri Hegde, M.; Shrishti Bekal, M.; Shenoy, P. D.; Venugopal, K. R. Preserving Privacy and Security of Electronic Health Records using Blockchain-based Federated Learning (BFL) Framework. IEEE Region 10 Humanitarian Technology Conference, R10-HTC, p. 853–859. 2023. https://doi.org/10.1109/R10-HTC57504.2023.10461823.
Gelashvili, T.; Pappel, I. Challenges of transition to paperless management: Readiness of incorporating AI in decision-making processes. 2021 8th International Conference on EDemocracy and EGovernment, ICEDEG 2021, p. 41–46. 2021. https://doi.org/10.1109/ICEDEG52154.2021.9530905.
Grechishcheva, S.; Efimov, E.; Metsker, O. Risk markers identification in EHR using natural language processing: hemorrhagic and ischemic stroke cases. Procedia Computer Science, n. 156, p. 142-149, 2019. https://doi.org/10.1016/j.procs.2019.08.189.
Groenner, L.; Faria, L.; Perissini, R; Gracioso, L. Um Estudo Bibliométrico sobre a pesquisa em Inteligência Artificial no Brasil. Brazilian Journal of Information Science: Research Trends, v. 16, e02147, 2022. https://doi.org/10.36311/1981-1640.2022.v16.e02147.
Guedes, V. L. S. A bibliometria e a gestão da informação e do conhecimento científico e tecnológico: uma revisão da literatura. Ponto de Acesso; v. 6, n. 2, 2012.
Hoffman, R. Using artificial intelligence to set information free. MIT Sloan Management Review, n. 58, p. 21-22, 2016. https://doi.org/10.7551/mitpress/11645.003.0007.
Hossain, E.; Rana, R.; Higgins, N.; Soar, J.; Barua, P. D.; Pisani, A. R.; Turner, K. Natural language processing in electronic health records in relation to healthcare decision-making: a systematic review. Computers in Biology and Medicine, n. 155, 106649, 2023. https://doi.org/10.1016/j.compbiomed.2023.106649.
Houssein, E. H.; Mohamed, R. E.; Ali, A. A. Machine learning techniques for biomedical natural language processing: a comprehensive review. IEEE Access, n. 9, 140628-140653, 2021. https://doi.org/10.1109/ACCESS.2021.3119621.
Humphreys, L., Boella, G., van der Torre, L., Robaldo, L., di Caro, L., Ghanavati, S., & Muthuri, R. Populating legal ontologies using semantic role labeling. Artificial Intelligence and Law, v. 29, n. 2, p. 171–211, 2021. https://doi.org/10.1007/s10506-020-09271-3.
Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q; Shen, H.; Wang, Y. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, v. 2, p. 230 – 243, 2017. https://doi.org/10.1136/svn-2017-000101.
Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, v. 62, n. 1, p. 15–25, 2019. https://doi.org/10.1016/J.BUSHOR.2018.08.004.
Kaufman, D. Desmistificando a inteligência artificial. Belo Horizonte: Autêntica, 2022.
Kurteva, K.; Tzanova, S. Electronic Document Management Systems in the Context of Scientific and Educational Project Management. Comparative Study and Discussion. 2023 32nd International Scientific Conference Electronics, ET 2023 - Proceedings. 2023. https://doi.org/10.1109/ET59121.2023.10279523.
Leaman, R.; Khare, R.; Lu, Z. Challenges in clinical natural language processing for automated disorder normalization. Journal of biomedical informatics, v. 57, p. 28-37, 2015. https://doi.org/10.1016/j.jbi.2015.07.010.
Leroy, G.; Gu, Y.; Pettygrove, S; Kurzius-Spencer, M. Automated lexicon and feature construction using word embedding and clustering for classification of ASD diagnoses using EHR. In Natural Language Processing and Information Systems: 22nd International Conference on Applications of Natural Language to Information Systems, NLDB 2017, Liège, Belgium, June 21-23, 2017, Proceedings 22 (p. 34-37). Springer International Publishing. 20017. https://doi.org/10.1007/978-3-319-59569-6_4.
Liu, J.; Liu, A.; Lu, X.; Welleck, S; West, P.; La Bras, R; Choi, Y.; Hajishirzi, H. Generated Knowledge Prompting for Commonsense Reasoning. arXiv preprint arXiv:2110.08387v3. 2022. https://doi.org/arXiv:2110.08387v3.
Ludermir, T. B. Inteligência Artificial e Aprendizado de Máquina: estado atual e tendências. Estudos Avançados, São Paulo, v. 35, n. 101, p. 85–94, 2021. https://doi.org/10.1590/s0103-4014.2021.35101.007.
Mello Filho, L. L. de; Araújo Júnior, R. H. Objetos de fronteira: um diálogo entre a ciência da informação e a ciência de dados. Encontros Bibli: Revista eletrônica de Biblioteconomia e Ciência da informação, v. 26, p. 1–22, 2021. https://doi.org/10.5007/1518-2924.2021.e77247.
Min, H. Artificial intelligence in supply chain management: theory and applications. International Journal of Logistics Research and Applications, v. 13, p. 13 – 39, 2010. https://doi.org/10.1080/13675560902736537.
Modiba, M. Legislation Used to Apply Artificial Intelligence for the Management of Records at the Council for Scientific and Industrial Research in South Africa. African Journal of Library Archives and Information Science, v. 32, n. 1, p. 21–35, 2022.
Modiba, M. Policy framework to apply artificial intelligence for the management of records at the Council for Scientific and Industrial Research. Collection and Curation, v. 42, n. 2, p. 53–60, 2023a. https://doi.org/10.1108/CC-11-2021-0034.
Modiba, M. User perception on the utilization of artificial intelligence for the management of records at the council for scientific and industrial research. Collection and Curation, v. 42, n. 3, p. 81–87, 2023b. https://doi.org/10.1108/CC-11-2021-0033.
Modiba, M.; Ngulube, P.; Marutha, N. Discharging Records Management Activities Using Artificial Intelligence at the Council for Scientific and Industrial Research, South Africa. African Journal of Library Archives and Information Science, v. 33, n. 1, p. 37–50, 2023c.
Negro-Calduch, E.; Azzopardi-Muscat, N.; Krishnamurthy, R. S.; Novillo-Ortiz, D. Technological progress in electronic health record system optimization: Systematic review of systematic literature reviews. International journal of medical informatics, n. 152, 104507, 2021. https://doi.org/10.1016/j.ijmedinf.2021.104507.
Neves, B. C. Inteligência artificial e computação cognitiva em unidades de informação: conceitos e experiências. Logeion: Filosofia da Informação, v. 7, n. 1, p. 186-205, 2020. https://doi.org/10.21728/logeion.2020v7n1.p186-205.
Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, n. 122, 103517, 2021. https://doi.org/10.1016/j.autcon.2020.103517.
Perianes-Rodriguez, A.; Waltman, L.; & Van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, v. 10, n. 4, p. 1178-1195, 2016.
Pournader, M.; Ghaderi, H.; Hassanzadegan, A.; Fahimnia, B. Artificial intelligence applications in supply chain management. International Journal of Production Economics, n. 241, 108250, 2021. https://doi.org/10.1016/J.IJPE.2021.108250.
Rao, K. P. N.; Manvi, S. Survey on Electronic Health Record Management Using Amalgamation of Artificial Intelligence and Blockchain Technologies. Acta Informatica Pragensia, v. 12, n. 1, p. 179–199, 2023. https://doi.org/10.18267/j.aip.194.
Ravindar, K.; Gupta, M.; Abdul-Zahra, D. S.; Maiti, N.; Chawla, R.; Prashanth, K. S. Utilizing Nlp and Machine Learning To Predict Patient Outcomes From Electronic Health Records In Cloud Environments. International Conference on Artificial Intelligence for Innovations in Healthcare Industries, ICAIIHI 2023. https://doi.org/10.1109/ICAIIHI57871.2023.10489152.
Sampaio, R. C.; Lycarião, D. Análise de conteúdo categorial: manual de aplicação. Brasília: ENAP, 2021. Disponível em: https://repositorio.enap.gov.br/handle/1/6542. Acesso em: 3 jun. 2024.
Santaella, L. A inteligência artificial é inteligente? São Paulo: Almedina Brasil, 2023.
Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making, 21. 2021. https://doi.org/10.1186/s12911-021-01488-9.
Tella, A.; Olaniyi, O. T.; Dunmade, A. O. Records management in the fourth industrial revolution: Challenges and the way forward. In: Handbook of Research on Records and Information Management Strategies for Enhanced Knowledge Coordination. 2021. https://doi.org/10.4018/978-1-7998-6618-3.ch001.
Toorajipour, R.; Sohrabpour, V; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, v. 122, p. 502-517, Jan. 2021. https://doi.org/10.1016/J.JBUSRES.2020.09.009
Torres E Silva, M. D., Carvalho, R. B., de Castro, J. M., & Soares, M. V. (2021). Information governance in the context of ERPsystems accounting modules for Industry 4.0: a framework proposal | Governança da informação no contexto dos módulos contábeis dos sistemas ERP para a Indústria 4.0: Proposta de framework. AtoZ: Novas práticas em informação E Conhecimento, v. 10, n. 3, p. 1–11, 2021. https://doi.org/10.5380/atoz.v10i3.81477
Turing, A. M. Computing machinery and intelligence. Springer Netherlands.
Viani, N., Patel, R., Stewart, R., Velupillai, S. (2019). Generating Positive Psychosis Symptom Keywords from Electronic Health Records. In: Riaño, D., Wilk, S., ten Teije, A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science, v. 11526. Springer, Cham., 2009. https://doi.org/10.1007/978-3-030-21642-9_38.
Vilar, S. B. Efficient Justice digital ecosystem (From Document-oriented digital Justice to Data-oriented Justice) | Ecosistema digital de Justicia eficiente (De la Justicia digital orientada al documento a la Justicia orientada al dato) (1) (2). Actualidad Civil, 5. 2023.
Villata, S.; Araszkiewicz, M.; Ashley, K.; Bench-Capon, T.; Branting, L. K.; Conrad, J. G.; Wyner, A. Thirty-years of artificial intelligence and law: the third decade. Artificial Intelligence and Law, v. 30, n. 4, p. 561–591, 2022. https://doi.org/10.1007/s10506-022-09327-6.
Wang, Y.; Wang, L.; Rastegar-Mojarad, M.; Moon, S.; Shen, F.; Afzal, N.; Liu, H. Clinical information extraction applications: a literature review. Journal of biomedical informatics, n. 77, p. 34-49, 2018a. https://doi.org/10.1016/j.jbi.2017.11.011.
Wang, Y.; Zhao, Y.; Therneau, T. M.; Atkinson, E. J.; Tafti, A. P.; Zhang, N.; Liu, H. Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. Journal of biomedical informatics, n. 102, 103364, 2020. https://doi.org/10.1016/j.jbi.2019.103364.
Xie, S. L.; Gao, Y.; Han, R. Information Resilient Society in an AI World—Is XAI Sufficient? Proceedings of the Association for Information Science and Technology, v. 59, n. 1, p. 522–526, 2022. https://doi.org/10.1002/pra2.663.
Xie, S. L.; Siyi, L.; Han, R. Competing with artificial intelligence – can the records and information management profession withstand the challenge? Records Management Journal, v. 32, n. 2, p. 151–169, 2022. https://doi.org/10.1108/RMJ-08-2021-0033.
Zeng, Z.; Deng, Y.; Li, X.; Naumann, T.; Luo, Y. Natural language processing for EHR-based computational phenotyping. IEEE/ACM transactions on computational biology and bioinformatics, v. 16, n. 1, p. 139-153, 2019. https://doi.org/10.1109/TCBB.2018.2849968.
Zheng, T.; Xie, W.; Xu, L.; He, X.; Zhang, Y.; You, M.; Chen, Y. A machine learning-based framework to identify type 2 diabetes through electronic health records. International journal of medical informatics, n. 97, p. 120-127, 2017a. https://doi.org/10.1016/j.ijmedinf.2016.09.014.
Zheng, T.; Zhang, Y. A Big Data Application of Machine Learning-Based Framework to Identify Type 2 Diabetes Through Electronic Health Records. In: Uden, L., Lu, W., Ting, IH. (eds) Knowledge Management in Organizations. KMO 2017. Communications in Computer and Information Science, v. 731, 2017b. Springer, Cham. https://doi.org/10.1007/978-3-319-62698-7_37.
Zong, N.; Wen, A.; Moon, S.; Fu, S.; Wang, L.; Zhao, Y.; Yu, Y.; Huang, M.; Wang, W.; Zheng, G.; Mielke, M. M.; Cerhan, J. R.; Liu, H. Computational drug repurposing based on electronic health records: a scoping review. npj Digit. Med., v. 5, 77, 2022. https://doi.org/10.1038/s41746-022-00617-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rodrigo Eduardo Botelho-Francisco, Daniel Arana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution License 4.0, allowing the sharing of work and recognition of the work of authorship and initial publication in this journal.
- Authors are able to take on additional contracts separately, non-exclusive distribution of the version of the paper published in this journal (ex.: distribute to an institutional repository or publish as a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to distribute their work online (eg.: in institutional repositories or on their website) at any point before or during the editorial process, as it can lead to productive exchanges, as well as increase the impact and citation the published work.













