Mineração e modelagem de conceitos como praxis de gestão do conhecimento para inteligência competitiva
Palavras-chave:
engenharia do conhecimento, inteligência artificial, inteligência competivia, mineração de conceitos, modelagem de conceitosResumo
Com o crescimento assintótico do volume de informação textual digital disponível sobre as organizações e acirramento da competição empresarial, métodos e técnicas de Engenharia do Conhecimento para recuperação e modelagem da informação relevante em repositórios abertos se tornam cada vez mais importantes para o desenvolvimento de processos de negócios. Com essa motivação, apresenta-se uma metodologia inovadora para mineração e modelagem conceitual de informação textual relevante para suporte a uma praxis de Gestão do Conhecimento apoiando o desenvolvimento de Inteligência Competitiva nas organizações. A metodologia, testada experimentalmente com simulação computacional, emprega recursos de Inteligência Artificial integrados em softwares de Processamento da Linguagem Natural, combinando, num construto epistemológico e tecnológico multidisciplinar de Ciência da Informação, conteúdos de várias áreas do conhecimento científico como Linguística, Filosofia, Matemática, Psicologia, Ciência da Computação e Engenharia. Os conceitos de autoinformação, de Shannon (1948), e da diferença que faz diferença (relativo à informação mais relevante), de Bateson (2002), Weick (1995) e Choo (2003), são centrais no processo de criação de significado, e o princípio da inteligência emergente, da Inteligência Artificial baseada na natureza, norteia o processo de apoio à construção do conhecimento proposto na tese. Os produtos resultantes da aplicação da metodologia são modelos ontológicos pictóricos com classes, objetos e relações povoados com sintagmas complexos extraídos dos textos digitais, com inspiração nas ideias de Gottschalg-Duque (2005). Esses modelos apresentam os conceitos e relações mais relevantes em contextos de negócio com objetivo de estimular, cognitivamente, os engenheiros do conhecimento nos seus processos mentais de criação de significados e construção do conhecimento útil para Inteligência Competitiva. O experimento mostra, estatisticamente, que a metodologia apresenta um desempenho bastante satisfatório, com revocação de no mínimo 90% de um conjunto dos substantivos mais relevantes presentes em repositórios de textos digitais sobre as organizações.
Downloads
Como Citar
Edição
Seção
Licença
Notas de direitos autorais
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License 4.0, permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: distribuir em repositório institucional ou publicar como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista. Autores têm permissão e são estimulados a distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.