Alterações bioquímicas em folhas de milho expostas a herbivoria de Spodoptera frugiperda (Lepidoptera: Noctuidae) e tratadas com altas diluições dinamizadas
DOI:
https://doi.org/10.33240/rba.v21i1.58984Palavras-chave:
Homeopatia, lagarta-do-cartucho, Indução de Resistência, NosódioResumo
A lagarta Spodoptera frugiperda causa perdas significativas na produção de biomassa e grãos de milho. Altas diluições dinamizadas podem atuar como substâncias indutoras de resistência das plantas aos insetos. Este estudo avaliou as alterações bioquímicas em folhas de milho tratadas com altas diluições dinamizadas preparadas com a lagarta S. frugiperda nas potências: 6, 12, 15 e 18 CH (Centesimal Hanemanniana) e expostas à herbivoria de S. frugiperda. As plantas de milho receberam os tratamentos via irrigação e, no estágio V3 (três folhas), foram infestadas com lagartas de 4º instar. As folhas foram coletadas antes e depois da herbivoria para avaliação de proteína, enzima guaiacol peroxidase (POD) e fenilalanina amônia-liase (FAL). Sete dias após o início da herbivoria, as plantas que receberam os tratamentos mostraram aumento na concentração de proteínas e, na atividade da POD, após 7 dias de herbivoria. Assim, observou-se que as diluições dinamizadas de lagartas S. frugiperda auxiliam na indução da resistência das plantas de milho e, consequentemente, na redução dos danos causados pela S. frugiperda.
Downloads
Referências
ALI, Qurban et al. Antioxidant production promotes defense mechanism and different gene expression level in Zeamays under abiotic stress. Scientific Reports v. 14, n. 1, p. 1–14 , 1 dez. 2024. Disponível em: https://www.nature.com/articles/s41598-024-57939-6 Acesso em: 9 jul. 2025.
ANDRADE, Fernanda M. Coutinho De; CASALI, Vicente W. Dias. Homeopatia, agroecologia e sustentabilidade. Revista Brasileira de Agroecologia, v. 6, n. 1, p. 49–56 , 2011.
BATOOL, Raufa et al. Myco-Synergism Boosts Herbivory-Induced Maize Defense by Triggering Antioxidants and Phytohormone Signaling. Frontiers in Plant Science v. 13, p. 790504 , 17 fev. 2022. Disponível em: www.frontiersin.org. Acesso em: 9 jul. 2025.
BOFF, Pedro; VERDI, Rovier; FAEDO, Leonardo F. Homeopathy applied to agriculture: theoretical and practical considerations with examples from Brazil. In: WRIGHT, Julia (Org.). Subtle agroecologies: farming with the hidden half of nature. 1st ed. ed. London (UK): CRC Press, 2021. p. 145–154.
BRADFORD, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry v. 72, n. 1–2, p. 248–254 , 1976.
BRASIL. Farmacopéia homeopática brasileira. 3. ed. São Paulo, SP: Atheneu, 2011. 364 p.
CHABOUSSOU, Francis. Plantas doentes pelo uso de agrotóxicos: novas bases de uma prevenção contra doenças e parasitas: a teoria da trofobiose. São Paulo, SP: Expressão Popular, 2006. 320 p.
CHAI, Pengpei et al. Genome-Wide Characterization of the Phenylalanine Ammonia-Lyase Gene Family and Their Potential Roles in Response to Aspergillus flavus L. Infection in Cultivated Peanut (Arachis hypogaea L.). Genes v. 15, n. 3 , 1 mar. 2024. Disponível em: https://pubmed.ncbi.nlm.nih.gov/38540324/. Acesso em: 9 jul. 2025.
CORDOBA CORREOSO, Claudio et al. Sustainability Assessment of Family Agricultural Properties: The Importance of Homeopathy. Sustainability (Switzerland) v. 14, n. 10, 1º mai. 2022.
COSTA, Eduardo Neves et al. Above- and belowground resistance in Brazilian maize varieties under attack of Spodoptera frugiperda and Diabrotica speciosa. Entomologia Experimentalis et Applicata v. 170, n. 8, p. 718–726 , 1 ago. 2022.
DEBONI, Tarita C. et al. Actividad peroxidasa y concentración de proteínas en Phaseolus vulgaris l. tratado con preparaciones homeopáticas. Research, Society and Development v. 10, n. 9, p. e59110918457 , 2 ago. 2021.
DUMAS, Pascaline et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica v. 143, n. 3, p. 305–316 , 2015.1070901598.
FAEDO, Leonardo et al. The use of mineral dynamised high dilutions for natural plant biostimulation; effects on plant growth, crop production, fruit quality, pest and disease incidence in agroecological strawberry cultivation. Biological Agriculture and Horticulture v. 40, n. 4, p. 267–287 , 2024.
GREENE, G. L.; LEPPLA, N. C.; DICKERSON, W. A. Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology v. 69, n. 4, p. 487–488 , 1976.
JUÁREZ, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains? Entomologia Experimentalis et Applicata v. 152, n. 3, p. 182–199, 2014.
KARBAN, Richard. The ecology and evolution of induced resistance against herbivores. Functional Ecology v. 25, n. 2, p. 339–347 , 2011.
LATEF, Arafat A. H. A. et al. Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide, Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce. Biology 2020, Vol. 9, Page 172 v. 9, n. 7, p. 172 , 17 jul. 2020. Disponível em: https://www.mdpi.com/2079-7737/9/7/172/htm. Acesso em: 9 jul. 2025.
LÓPEZ-CASTILLO, L. Margarita et al. Modulation of Aleurone Peroxidases in Kernels of Insect-Resistant Maize (Zea mays L.; Pob84-C3R) After Mechanical and Insect Damage. Frontiers in Plant Science v. 11 , 11 jun. 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32595673/. Acesso em: 9 jul. 2025.
LORENZO, Francesco Di et al. Systemic Agro-Homeopathy: A New Approach to Agriculture. OBM Integrative and Complementary Medicine v. 06, n. 03, p. 1–1 , 11 de maio de 2021. Disponível em: http://www.lidsen.com/journals/icm/icm-06-03-020.
LV, Min et al. Induction of phenylalanine ammonia-lyase (PAL) in insect damaged and neighboring undamaged cotton and maize seedlings. International Journal of Pest Management v. 63, n. 2, p. 166–171 , 3 abr. 2017. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/09670874.2016.1255804. Acesso em: 9 jul. 2025.
MALTA, Marcelo R. et al. Efeito da aplicação de zinco via foliar na síntese de triptofano, aminoácidos e proteínas solúveis em mudas de cafeeiro. Brazilian Journal of Plant Physiology v. 14, n. 1, p. 31–37 , 2002. Disponível em: https://www.scielo.br/j/bjpp/a/f4TSgdw9G4PRSkjBcpZQz6t/. Acesso em: 8 jul. 2025.
MATTOS, Amanda do P. et al. Induction resistance of fig plants to rust by dynamised high dilutions. Biological Agriculture & Horticulture v. 41, n. 1, p. 1–12 , 2 jan. 2025. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/01448765.2024.2406793. Acesso em: 9 jul. 2025.
MÉREY, Georg E. V. et al. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars. Frontiers in Plant Science v. 4, n. JUN, p. 209 , 28 jun. 2013. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC3695448/. Acesso em: 9 jul. 2025.
MEZZOMO, Priscila et al. Leaf volatile and nonvolatile metabolites show different levels of specificity in response to herbivory. Ecology and Evolution v. 13, n. 5, p. e10123 , 1º mai. 2023. Disponível em: /doi/pdf/10.1002/ece3.10123. Acesso em: 9 jul. 2025.
MIORANZA, Thaísa M. et al. Control of Meloidogyne incognita in tomato plants with highly diluted solutions of Thuya occidentalis and their effects on plant growth and defense metabolism. Semina:Ciencias Agrarias v. 38, n. 4, p. 2187–2200 , 2017.
NAGOSHI, Rod N. et al. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Annals of the Entomological Society of America v. 100, n. 3, p. 394–402 , 2007.
OJHA, Megha; NAIDU, Dilip G.T.; BAGCHI, Sumanta. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. Journal of Ecology v. 110, n. 4, p. 799–816 , 1 abr. 2022.
OLIVEIRA, Juliana S. B. et al. Activation of biochemical defense mechanisms in bean plants for homeopathic preparations. African Journal of Agricultural Research v. 9, n. 11, p. 971–981 , 2014.
PANT, Shankar; HUANG, Yinghua. Genome-wide studies of PAL genes in sorghum and their responses to aphid infestation. Scientific Reports v. 12, n. 1, p. 22537 , 1 dez. 2022. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC9800386/. Acesso em: 9 jul. 2025.
PINHEIRO, Luana da S. et al. Características agro econômicas do milho: uma revisão. Natural Resources v. 11, n. 2, p. 13–21 , 12 abr. 2021.
PRIETO MÉNDEZ, J.; et al. Agrohomeopathy: New tool to improve soils, crops and plant protection against various stress conditions. Review. Horticultura Argentina v. 40, n. 101, p. 43–58 , 12 abr. 2021.
RAM, K. V.; RAJ, A. D.; PATEL, K. H. Effect of Nitrogen, Phosphorus and Potassium on Yield, Quality, Nutrient Content and Uptake on Hybrid Maize (Zea mays L.). Agricultural Science Digest v. 43, n. 3, p. 295–300 , 1º jun. 2023.
SAU, Ashok K.; DHILLON, Mukesh K.; TRIVEDI, Neha. Activation of antioxidant defense in maize in response to attack by Sesamia inferens (Walker). Phytoparasitica v. 50, n. 5, p. 1043–1058 , 1 nov. 2022. Disponível em: https://link.springer.com/article/10.1007/s12600-022-00996-2. Acesso em: 9 jul. 2025.
UMESHA, S. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica v. 34, n. 1, p. 68–71 , 2006.
VENDRAMIM, José D.; GUZZO, Élio C.; RIBEIRO, Leandro do P.. Antibiose. In: BALDIN, Edson Luiz Lopes; VENDRAMIM, José Djair; LOURENÇÃO, André Luiz (Orgs.). . Resistência de plantas a insetos: fundamentos e aplicações. Piracicaba, SP: FEALQ, 2019. p. 185–224.
WATERMAN, Jamie M. et al. High-resolution kinetics of herbivore-induced plant volatile transfer reveal clocked response patterns in neighboring plants. eLife v. 12, p. RP89855 , 22 fev. 2024. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC10942584/. Acesso em: 9 jul. 2025.
YADAV, Vivek et al. Phenylpropanoid pathway engineering: An emerging approach towards plant defense .Pathogens. v. 9, n.1, p. 312, 2020.
YAMÉOGO, Innocent S. et al. Level of damage and yield losses associated with the fall armyworm (Spodoptera frugiperda) on maize (Zea mays), millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) on station in Burkina Faso. Crop Protection v. 182, p. 106743 , 1 ago. 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0261219424001716. Acesso em: 8 jul. 2025.
ZAHRA, Noreen et al. Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany v. 206, p. 105178 , 1 fev. 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0098847222004002. Acesso em: 8 jul. 2025.
ZERAIK, Nosode
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Kathleen Tesser Carra, Lucas Airam Ramos Lima, Marieli Nandra Perkuhn, Denise Cargnelutti, Tarita Cira Deboni

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de direitos autorais
Os direitos autorais dos artigos publicados nesta revista permanecem com os autores, com direitos de primeira publicação para a revista.
Licença
Quando publicados nesta revista de acesso aberto, licenciados por meio do CC BY 4.0, os artigos são distribuídos gratuitamente, podendo ser compartilhados e adaptados para qualquer finalidade, inclusive comercial. Como atribuição de uso, a licença exige que seja dado o devido crédito, com um link para a licença e indicação de alterações. Isso não significa que o licenciante endosse o uso das informações do artigo, ou a pessoa que usou essas informações. Implica, também a, impossibilidade de aplicação de medidas legais ou tecnológicas que restrinjam o uso da informação por terceiros.










