The Data Generation Mechanism

Relationship Between Constructs and Their Indicators

Auteurs-es

DOI :

https://doi.org/10.1590/0102.3772e39nspe08.en

Mots-clés :

Psychometrics, Data analysis, Data generation mechanism, Reflective models, Formative models, Network analysis

Résumé

The choice of statistical data analysis should be guided by a critical analysis that supports the theoretical relationship between the construct and its indicators. This theoretical article reviews the three main existing psychometric paradigms and their proposals for explaining the relationship between indicators and their constructs. The discussion begins with the standard paradigm that guides the construction and analysis of data in psychology, reflective model. Then, a description of the formative models is performed and finally the Network Analysis as an alternative. The definitions, consequences, and limitations of the use of each measurement model are presented such as a reflection on making decisions about which data generation mechanisms are more appropriate.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Barzel, B., & Biham, O. (2009). Quantifying the connectivity of a network: The network correlation function method. Physical Review E, 80(4), 046104-046104. https://doi.org/10.1103/PhysRevE.80.046104

Benassi, M., Garofalo, S, Ambrosini, F., Sant'Angelo, R.P., Raggini, R., De Paoli, G., Ravani, C., Giovagnoli, S., Orsoni, M., Piraccini, G. (2020). Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients. Frontiers in Psychology, 10(11), 1085. https://doi.org/10.3389/fpsyg.2020.01085

Bollen, K. A. (1989). Structural equations with latent variables (Vol. 210). John Wiley & Sons. https://doi.org/10.1002/9781118619179

Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605-634. https://doi.org/10.1146/annurev.psych.53.100901.135239

Bollen, K. A., & Bauldry, S. (2011). Three Cs in measurement models: causal indicators, composite indicators, and covariates. Psychological Methods, 16(3), 265-265. https://doi.org/10.1037/a0024448

Bollen, K. A., & Davis, W. R. (2009). Causal indicator models: Identification, estimation, and testing. Structural Equation Modeling: A Multidisciplinary Journal, 16(3), 498- 522. https://doi.org/10.1080/10705510903008253

Bollen, K. A., & Diamantopoulos, A. (2017). In defense of causal-formative indicators: A minority report. Psychological Methods, 22(3), 581-581. https://doi.org/10.1037/met0000056

Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305-305. https://doi.org/10.1037/0033-2909.110.2.305

Borsboom, D. (2005). Measuring the Mind: Conceptual Issues in Contemporary Psychometrics Cambridge University Press. https://doi.org/10.1017/CBO9780511490026

Borsboom, D. (2008). Latent Variable Theory. Measurement: Interdisciplinary Research and Perspectives, 6, 25-35. https://doi.org/10.1080/15366360802035497

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13. https://doi.org/10.1002/wps.20375

Borsboom, D., & Cramer, A. O. (2013). Network analysis: an integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91-121. https://doi.org/10.1146/annurev-clinpsy-050212-185608

Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., Robinaugh, D. J., Perugini, M., Dalege, J., Costantini, G. et al. (2021). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(58). https://doi.org/10.1038/s43586-021-00055-w

Brennan, R. L. (1992). Generalizability theory. Educational Measurement: Issues and Practice, 11(4), 27-34. https://doi.org/10.1111/j.1745-3992.1992.tb00260.x

Chang, W., Franke, G. R., & Lee, N. (2016). Comparing reflective and formative measures: New insights from relevant simulations. Journal of Business Research, 69(8), 3177-3185. https://doi.org/10.1016/j.jbusres.2015.12.006

Christensen, A. P., Golino, H., & Silvia, P. J. (2020). A psychometric network perspective on the validity and validation of personality trait questionnaires. European Journal of Personality, 34(6), 1095-1108. https://doi.org/10.1002/per.2265

Cole, D. A., & Preacher, K. J. (2014). Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychological Methods, 19(2), 300-315. https://doi.org/10.1037/a0033805

Cramer, A. O., & Borsboom, D. (2015). Problems attract problems: A network perspective on mental disorders. Emerging Trends in the Social and Behavioral Sciences: An Interdisciplinary, Searchable, and Linkable Resource, 1-15. https://doi.org/10.1002/9781118900772.etrds0264

Dalege, J., Borsboom, D., van Harreveld, F., & van der Maas, H. L. (2019). A network perspective on attitude strength: Testing the connectivity hypothesis. Social Psychological and Personality Science, 10(6), 746-756. https://doi.org/10.1177/1948550618781062

Darrow, J. B., & Behrend, T. S. (2017). Person-environment fit is a formative construct. Journal of Vocational Behavior, 103, 117-131. https://doi.org/10.1016/j.jvb.2017.08.007

De Beurs, D., Fried, E. I., Wetherall, K., Cleare, S., O' Connor, D. B., Ferguson, E., … O' Connor, R. C. (2019). Exploring the psychology of suicidal ideation: A theory driven network analysis. Behaviour Research and Therapy, 120, 103419. https://doi.org/10.1016/j.brat.2019.103419

Diamantopoulos, A., & Temme, D. (2013). MIMIC models, formative indicators and the joys of research. AMS Review, 3(3), 160-170. https://doi.org/10.1007/s13162-013-0050-0

Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269-277. https://doi.org/10.1509/jmkr.38.2.269.18845

Edwards, J. R. (2011). The fallacy of formative measurement. Organizational Research Methods, 14(2), 370-388. https://doi.org/10.1177/1094428110378369

Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5(2), 155-155. https://doi.org/10.1037/1082-989X.5.2.155

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195-212. https://doi.org/10.3758/s13428-017-0862-1

Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617-617. https://doi.org/10.1037/met0000167

Epskamp, S. (2020). Psychometric network models from time-series and panel data. Psychometrika, 85(1), 1-34. https://doi.org/10.31234/osf.io/8ha93

Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12, 999-1020. https://doi.org/10.1177/1745691617705892

Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PloS One, 12(6), e0174035-e0174035. https://doi.org/10.1371/journal.pone.0174035

Hanafiah, M.H. (2020). Formative Vs. Reflective Measurement Model: Guidelines for Structural Equation Modeling Research. International Journal of Analysis and Applications, 18, 876-889. https://doi.org/10.28924/2291-8639-18-2020-876

Howell, R. D., Breivik, E., & Wilcox, J. B. (2007). Reconsidering formative measurement. Psychological Methods, 12(2), 205-218. https://doi.org/10.1037/1082-989X.12.2.205

Ikanga, J., Hill, E. M., & MacDonald, D. A. (2017). The conceptualization and measurement of cognitive reserve using common proxy indicators: Testing some tenable reflective and formative models. Journal of Clinical and Experimental Neuropsychology, 39(1), 72-83. https://doi.org/10.1080/13803395.2016.1201462

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199-218. https://doi.org/10.1086/376806

Jonas, K. G., & Markon, K. E. (2016). A descriptivist approach to trait conceptualization and inference. Psychol Rev ., 123(1), 90-96. https://doi.org/10.1037/a0039542

Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409-426. https://doi.org/10.1007/BF02291366

Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70(351a), 631-639. https://doi.org/10.2307/2285946

Kalisch, R., Cramer, A. O., Binder, H., Fritz, J., Leertouwer, I., Lunansky, G., & van Harmelen, A. L. (2019). Deconstructing and reconstructing resilience: a dynamic network approach. Perspectives on Psychological Science, 14(5), 765-777. https://doi.org/10.1177/1745691619855637

Kruis, J., & Maris, G. (2016). Three representations of the Ising model. Scientific Reports, 6(1), 1-11. https://doi.org/10.1038/srep34175

Lange, J., Dalege, J., Borsboom, D., van Kleef, G. A., & Fischer, A. H. (2020). Toward an Integrative Psychometric Model of Emotions. Perspectives on Psychological Science, 15(2), 444-468. https://doi.org/10.1177/1745691619895057

Law, K. S., & Wong, C.-S. (1999). Multidimensional Constructs M Structural Equation Analysis: An Illustration Using the Job Perception and Job Satisfaction Constructs. Journal of Management, 25(2), 143-160. https://doi.org/10.1177/014920639902500202

Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). The axioms and principal results of classical test theory Addison-Wesley. https://doi.org/10.1002/j.2333-8504.1965.tb00132.x

MacCallum, R. C., & Browne, M. W. (1993). The use of causal indicators in covariance structure models: some practical issues. Psychological Bulletin, 12, 413-429. https://doi.org/10.1037/0033-2909.114.3.533

MacKenzie, S. B., Podsakoff, P. M., & Jarvis, C. B. (2005). The problem of measurement model misspecification in behavioral and organizational research and some recommended solutions. Journal of Applied Psychology, 90(4), 710-710. https://doi.org/10.1037/0021-9010.90.4.710

McDonald, R. P. (1996). Latent traits and the possibility of motion. Multivariate Behavioral Research, 31(4), 593-601. https://doi.org/10.1207/s15327906mbr3104_12

McNally, r. j. (2016). Can network analysis transform psychopathology?, Behaviour Research and Therapy, 86, 95-104. https://doi.org/10.1016/j.brat.2016.06.006

Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological Bulletin, 115(2), 300-307. https://doi.org/10.1037/0033-2909.115.2.300

Molenaar, P. C. M. (2010). Latent variable models are net- work models. Behavioral and Brain Sciences, 33(2-3), 166-166. doi:10.1017/S0140525X10000798

Neal, Z. P., Forbes, M. K., Neal, J. W., Brusco, M., Krueger, R., Markon, K., Steinley, D., Wasserman, S., & Wright, A. G. C. Critiques of network analysis of multivariate data in psychological science. (2022). Nat Rev Methods Primers, 2, 90. https://doi.org/10.1038/s43586-022-00177-9

Novick, M. R. (1966). The axioms and principal results of classical test theory. Journal of Mathematical Psychology, 3(1), 1-18. https://doi.org/10.1016/0022-2496(66)90002-2

Pearl, J. (2000). Causal inference without counterfactuals: Comment. Journal of the American Statistical Association, 95(450), 428-431. https://doi.org/10.2307/2669380

Peterson, C. H., Gischlar, K. L., & Peterson, N. A. (2017). Item construction using reflective, formative, or rasch measurement models: Implications for group work. Journal for Specialists in Group Work, 42(1), 17-32. https://doi.org/10.1080/01933922.2016.1264523

Petter, S., Rai, A., & Straub, D. (2012). The Critical Importance of Construct Measurement Specification: A Response to Aguirre-urreta and Marakas. MIS Quarterly, 36(1), 147-156. https://doi.org/10.2307/41410411

Primi, R. (2003). Inteligência: avanços nos modelos teóricos e nos instrumentos de medida. Avaliação Psicológica, 2(1), 67-77.

Rasch, G. (1960). Studies in mathematical psychology: I. Probabilistic models for some intelligence and attainment tests Nielsen & Lydiche. Available in: https://psycnet.apa.org/record/1962-07791-000

Rhemtulla, M., van Bork, R., & Borsboom, D. (2020). Worse than measurement error: Consequences of inappropriate latent variable measurement models. Psychological Methods, 25(1), 30-30. https://doi.org/10.1037/met0000220

Robinaugh, D. J., Millner, A. J., & McNally, R. J. (2016). Identifying highly influential nodes in the complicated grief network. Journal of Abnormal Psychology, 125(6), 747-747. https://doi.org/10.1037/abn0000181

Schmittmann, V. D., Cramer, A. O., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: a network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43-53. https://doi.org/10.1016/j.newideapsych.2011.02.007

Spearman, C. (1904). "General Intelligence", objectively determined and measured. American Journal of Psychology, 15, 201-293. https://doi.org/10.2307/1412107

Spector, P. E. (1992). Summated Rating Scale Construction: An Introduction Sage CA. https://doi.org/10.4135/9781412986038

Thompson, B. (2003). Guidelines for authors reporting score reliability estimates. In B. Thompson (Ed.), Reliability: Contemporary thinking on reliability issues(91-102). Thousand Oaks, CA: Sage. https://dx.doi.org/10.4135/9781412985789

van der Maas, H. L., Kan, K.-J., & Borsboom, D. (2014). Intelligence Is What the Intelligence Test Measures. Seriously. Journal of Intelligence, 2(1), 12-15. https://doi.org/10.3390/jintelligence2010012

van der Maas, H. L., Dolan, C. v., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. (2006). A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842-842. https://doi.org/10.1037/0033-295X.113.4.842

van Rooij, A. J., van Looy, J., & Billieux, J. (2017). Internet Gaming Disorder as a formative construct: Implications for conceptualization and measurement. Psychiatry and Clinical Neurosciences, 71(7), 445-458. https://doi.org/10.1111/pcn.12404

Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world'networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918

Willoughby, M. T., & Blair, C. B. (2016). Measuring executive function in early childhood: A case for formative measurement. Psychological Assessment, 28(3), 319-330. https://doi.org/10.1037/pas0000152

Zagenczyk, T. J., Scott, K. D., Gibney, R., Murrell, A. J., & Thatcher, J. B. (2010). Social influence and perceived organizational support: A social networks analysis.Organizational Behavior and Human Decision Processes,111(2), 127-138. https://doi.org/10.1016/j.obhdp.2009.11.004

Téléchargements

Publié-e

2023-07-03

Comment citer

Damasceno Cunha, R., Faiad, C., Nunes Baptista, M., & Ferrari Cardoso, H. (2023). The Data Generation Mechanism: Relationship Between Constructs and Their Indicators. Psicologia: Teoria E Pesquisa, 39. https://doi.org/10.1590/0102.3772e39nspe08.en

Numéro

Rubrique

Número Especial Avaliação Psicológica