Behavioral and Immunological Effects of Fluoxetine in Rats Submitted to Forced Swimming
Keywords:
Immunomodulation, Body weight, Forced swimming, FluoxetineAbstract
In the present study, behavioral and immunomodulatory effects of fluoxetine were evaluated with the forced swim test, an animal model of depression. In this model, floating behavior is responsive to antidepressants and is used as a behavioral index of despair. During 12 days, three times a day, two groups were treated intraperitoneally with saline or fluoxetine. Additionally, the humoral immune response to immunostimulation (sheep red blood cells) was evaluated. The animals treated with fluoxetine floated longer, showed decreases in body mass and had lower total production of antibodies. The results indicate simultaneous modulation of behavior and antibody production by fluoxetine.
Downloads
References
Alperina, E. L., Kulikov, A. V., Popova, N. K., & Idova, G. V. (2007). Immune response in mice of a new strain ASC (Antidepressants Sensitive Catalepsy). Bulletin of Experimental Biology and Medicine, 144, 221-223. doi: 10.1007/s10517-007-0294-5
Altenburg, A. S. P., Ventura, d. G., Da-Silva, V. A., Malheirosa, L. R., Castro-Faria-Neto, H. C., Bozza, P. T., & Teixeira, N. A. (2002). The role of forced swim test on neutrophil leukocytosis observed during inflammation induced by LPS in rodents. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 26, 891”“ 895. doi: org/10.1016/S0278-5846(01)00335-9
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4ª ed., text revision). Washington, DC: American Psychiatric Association.
Baldwin, D. R., Wilcox, Z. C., & Baylosis, R. C. (1995). Impact of differential housing on humoral immunity following exposure to an acute stressor in rats. Physiology and Behavior, 57, 649-653. doi: org/10.1016/0031-9384(94)00313-0
Borsini, F., & Meli, A. (1988). Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology, 94, 147”“160. doi: 10.1007/BF00176837
Carr, G. V., Schechter, L. E., & Lucki, I. (2010). Antidepressant and anxiolytic effects of selective 5-HT6 receptor agonists in rats. Psychopharmacology, doi: 10.1007/s00213-010-1798-7
Cryan, J. F., & Lucki, I. (2000). Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine 2C receptors1. E-The Journal of Pharmacology and Experimental Therapeutics, 295, 1120-1126. Retrieved from http://jpet.aspetjournals.org/content/295/3/1120.long
Cryan, J. F., Page, M. E., & Lucki, I. (2002). Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test. E-European Journal of Pharmacology, 436, 197”“205. Retrieved from http://neurobio.drexel.edu/pageweb/ejp.pdf
Deitos, F., Copette, F. R., Pasqualotto, A. C., Segat, F. M., Santos, R. P., & Guillande, S. (1999). Antidepressivos e seus efeitos colaterais, quais são e como reconhecê-los. E-Revista Brasileira de Clinica Terapêutica, 25, 63-70. Retrieved from http://www.moreirajr.com.br/revistas.asp?fase=r003&id_materia=1354
Duvvuri, V., Bailer, U. F., & Kaye, W. H. (2010). Altered Serotonin Function in Anorexia and Bulimia Nervosa. In C. P. Müller & B. L. Jacobs (Eds.), Handbook of the behavioral neurobiology of serotonin (pp. 715-729). London, UK: Elsevier.
Egeland, M., Warner-Schmidt, J., Greengard, P., & Svenningsson, P. (2010). Neurogenic effects of fluoxetine are attenuated in p11 (S100A10) knockout mice. Biological Psychiatry, 67, 1048-1056. doi: org/10.1016/j.biopsych.2010.01.024
Fazzino, F., Urbina, M., Cedeño, N., & Lima, L. (2009). Fluoxetine treatment to rats modifies serotonin transporter and cAMP in lymphocytes, CD4+ and CD8+ subpopulations and interleukins 2 and 4. International Immunopharmacology, 9, 463”“467. doi:org/10.1016/j.intimp.2009.01.011
Freire-Garabal, M., Nlifiez, M. J., Losada, C., Pereiro, D., Riveiro, M. P., Gonzalez-Patiao, E., . . . Rey-Mendez, M. (1997). Effects of fluoxetine on the immunosuppressive response to stress in mice. Life Sciences, 60, 403-413. doi: org/10.1016/S0024-3205(97)00329-9
Frick, L. R., Rapanelli, M., Cremaschi, G. A., & Genaro, A. M. (2009). Fluoxetine directly counteracts the adverse effects of chronic stress on T cell immunity by compensatory and specific mechanisms. Brain, Behavior, and Immunity, 23, 36”“40. doi: org/10.1016/j.bbi.2008.06.010
Frick, L. R., Palumbo, M. L., Zappia, M. P., Brocco, M. A., Cremaschi, G. A., & Genaro, A. M. (2008). Inhibitory effect of fluoxetine on lymphoma growth through the modulation of antitumor T-cell response by serotonin-dependent and independent mechanisms. Biochemical Pharmacology, 75, 1817-1826. doi: org/10.1016/j.bcp.2008.01.015
Guimarães, C. (2006). Tolerabilidade e eficácia da fluoxetina na redução de parâmetros antropométricos e metabólicos em mulheres obesas. Dissertação de Mestrado, Universidade de São Paulo, Ribeirão Preto.
Guimarães, F. S. (1999). Medicamentos antidepressivos e estabilizadores do humor. In F. G. Graeff & F. S. Guimarães (Eds.), Fundamentos de psicofarmacologia (pp. 93-122). São Paulo, SP: Atheneu.
Gutiérrez, A., Saracíbar, G., Casis, L., Echevarría, E., Rodríguez, V. M., Macarulla, . . .Portillo, M. P. (2002). Effects of fluoxetine administration on neuropeptide Y and orexins in obese Zucker rat hypothalamus. Obesity Research, 10, 532-540. doi: 10.1038/oby.2002.72
Guyton, A. C., & Hall, J. E. (2002). Tratado de fisiologia médica (10ª ed.). Rio de Janeiro, RJ: Guanabara Koogan.
Jazayeri, S., Keshavarz, S. A., Tehrani-Doost, M., Djalali, M., Osseini, M., Amini, H., . . . Djazayery, A. (2010). Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1beta and interleukin-6 oncentrations in patients with major depressive disorder. Psychiatry Research, 178, 112”“115. doi: org/10.1016/j.psychres.2009.04.013
Kennedy, S. L., Nickerson, M., Campisi, J., Johnson, J. D., Smith, T. P., Sharkey, C., & Fleshner, M. (2005). Splenic norepinephrine depletion following acute stress suppresses in vivo antibody response. Journal of Neuroimmunology, 165, 150”“160. doi: org/10.1016/j.jneuroim.2005.05.001
Kubera, M., Kenis, G., Bosmans, E., Kajta, M., Basta-Kaim, A., Scharpe, S., . . . Maes, M. (2004). Stimulatory effect of antidepressants on the production of IL-6. International Immunopharmacology, 4, 185”“192. doi: org/10.1016/j.intimp. 2003.11.006
Kubera, M., Symbirtsev, A., Basta-Kaim, A., Borycz, J., Roman, A., Papp, M., & Claesson, M. (1996). Effect of chronic treatment with imipramine on interleukin 1 and interleukin 2 production by splenocytes obtained from rats subjected to a chronic mild stress model of depression. E-Polish Journal of Pharmacology, 48, 503”“506. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9112692
Leite, C. E., Nunes, F. B., Pires, M. G. S., Lunardelli, A., Lhullier, F. R., Martins, M. R., & Oliveira, J. R. (2007). Influência do uso continuado de fluoxetina nas dosagens séricas de prolactina em mulheres. E-Revista Brasileira de Análises Clínicas, 39, 283-285. Retrieved from http://www.sbac.org.br/pt/pdfs/rbac/rbac_39_04/rbac_39_04_10.pdf
Lucki, I. (1997). The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behavioral Pharmacology, 8, 523”“532. doi: 10.1097/00008877-199711000-00010
Maes, M., Meltzer, H. Y., Bosmans, E., Bergmans, R., Vandoolaeghe, E., Ranjan, R., & Desnyder, R. (1995). Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. Journal of Affective Disorders, 34, 301-309. doi:org/10.1016/0165-0327(95)00028-L
Miller, A. H. (2010). Depression and immunity: A role for T cells? Brain, Behavior and Immunity. 24, 1-8. doi: org/10.1016/j.bbi.2009.09.009
Moreno, R. A., Moreno, D. H., & Soares, M. B. M. (1999). Psicofarmacologia de antidepressivos. Revista Brasileira de Psiquiatria, 21, 24-40. doi: org/10.1590/S1516-44461999000500006
Mravec, B., Gidron, Y., Kukanova, B., Bizik, J., Kiss, A., & Hulin, I. (2006). Neural-endocrine”“immune complex in the central modulation of tumorigenesis: Facts, assumptions, and hypotheses. Journal of Neuroimmunology, 180, 104”“116. doi:10.1016/j.jneuroim.2006.07.003
Nishida, A., Hisaoka, K., Zensho, H., Uchitomi, Y., Morinobu, S., & Yamawaki, S. (2002). Antidepressant drugs and cytokines in mood disorders. International Immunopharmacology, 2, 1619”“1626. doi: org/10.1016/S1567-5769(02)00190-X
Page, M. E., Detke, M. J., Kirby, A. D. L. G., & Lucki, I. (1999). Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology, 147, 162”“167. doi: 10.1007/s002130051156
Pedersen, K. B., & Hoffman-Goetz, L. (2000). Exercise and the immune system: regulation, integration and adaptation. E-Physiology Reviews, 80, 1055-1081. Retrieved from http://physrev.physiology.org/content/80/3/1055.short
Pellegrino, T. C., & Bayer, B. M. (2002). Role of central 5-HT2 receptors in fluoxetine-induced decreases in T lymphocyte activity. Brain, Behavior, and Immunity, 16, 87”“103. doi: org/10.1006/brbi.2001.0625
Porsolt, R.D., Le Pichon, M., & Jalfre, M. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266, 730”“732. doi:10.1038/266730a0
Robles, T. F., Glaser, R., & Kiecolt-Glaser, J. K. (2005). A new look at chronic stress, depression, and immunity. Current Directions in Psychological Science, 14, 111-115. doi: 10.1111/j.0963-7214.2005.00345.x
Roumestan, C., Michel, A., Bichon, F., Portet, K., Detoc, M., Henriquet, C., . . . Mathieu, M. (2007). Anti-inflammatory properties of desipramine and fluoxetine. Respiratory Research, 8, 1-11. doi:10.1186/1465-9921-8-35
Sacre, S., Medghalchi, M., Gregory, B., Brennan, F., & Williams, R. (2010). Fluoxetine and citalopram exhibit potent antiinflammatory activity in human and murine models of rheumatoid arthritis and inhibit toll-like receptors. Arthritisand rheumatism, 62, 683”“693. doi: 10.1002/art.27304
Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1995). Cytokine production and serum proteins in depression. Scandinavian Journal of Immunology, 41, 534”“538. doi: 10.1111/j.1365-3083.1995.tb03604.x
Vismari, L., Alves, G. J., & Palermo-Neto, J. (2008). Depressão, antidepressivos e sistema imune: um novo olhar sobre um velho problema. Revista de Psiquiatria Clínica, 35, 196-204. doi: org/10.1590/S0101-60832008000500004
Wellman, P. J., Jones, S. L., & Miller, D. K. (2003). Effects of preexposure to dexfenfluramine, phentermine, dexfenfluramine”“phentermine, or fluoxetine on sibutramine-induced hypophagia in the adult rat. Pharmacology Biochemistry and Behavior, 75, 103-114. doi: org/10.1016/S0091-3057(03)00045-5
Willner, P. (1991). Behavioural models in psychopharmacology. In P. Willner (Ed.), Behavioural models in psychopharmacology: theoretical, industrial, and clinical perspectives (pp. 3-18). Cambridge: Cambridge University Press.
Wise, S. D. (1992). Clinical studies with fluoxetine in obesity. E-American Journal of Clinical Nutrition. 55, 181S-184S. Retrieved from http://www.ajcn.org/content/55/1/181S.short
Zafir, A., & Banu, N. (2007). Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. European Journal of Pharmacology, 572, 23”“31. doi: org/10.1016/j.ejphar.2007.05.062