Mathematics in Everyday Life Versus Mathematics in School:

A Question of Situated Cognition or a Question of Social Identities?

Authors

  • Guida de Abreu University of Luton, Inglaterra

Keywords:

Cognition, Culture, Socio-cultural context, Mathematics learning, Social identity

Abstract

This paper aims to discuss how children experience the relationship between their home and school mathematics.
An empirical study is presented in order to illustrate: (a) the need to move beyond the current "situated cognition" explanations;
(b) an alternative explanation of that relationship in terms of "construction of social identities". The study was conducted
among school-children growing up in a farming community in the Northeast of Brazil, where home mathematics differs
markedly from school mathematics.

Downloads

Download data is not yet available.

References

Abreu, G. de. (1988). O uso da matemática na agricultura: o caso
dos produtores de cana-de-açúcar. Dissertação de Mestrado,
Universidade Federal de Pernambuco, Recife.
Abreu, G. de. (1991). Psicologia no trabalho, um enfoque cognitivo:
o uso da matemática por agricultores de cana-de-açúcar. Psicologia,
Teoria e Pesquisa, 7, 163-177.
Abreu, G. de. (1993). The relationship between home and school
mathematics in a farming community in rural Brazil. Tese de
Doutorado, Universidade de Cambridge, Cambridge,
Inglaterra.
Abreu, G. de. (1995). Understanding how children experience the
relationship between home and school mathematics. Mind,
Culture and Activity: An International Journal, 2, 119-142.
Abreu, G. de, Bishop, A.J. & Pompeu, G. (no prelo). What children
and teachers count as mathematics. Em P. Bryant & T. Nunes
(Orgs.), How do children learn mathematics, Brighton:
Lawrence Erlbaum.
Abreu, G. de & Carraher, D.W. (1989). The mathematics of Brazilian
sugar-cane farmers. Em C. Keitel, P. Damerow, A.
Bishop & P. Gerdes (Orgs.), Mathematics, education, and
society (pp. 68-70). Paris: UNESCO.
Bishop, A.J. (1988). Mathematical enculturation: A cultural perspective
on mathematics education. Dordrecht: Kluwer.
Brenner, M.E. (1985). The practice of arithmetic in Liberian
schools. Anthropology and Education Quarterly, 16, 177-186.
Brenner, M.E. (1991). Knowledge and situated cognition: Children^
knowledge ofmoney in stores and in school. Trabalho
apresentado na XV International Conference for the Psychology
of Mathematics Education, Assisi, Itália.
Carraher, D.W. (1991). Mathematics learned in and out of school:
A selective review of studies from Brazil. Em M. Harris (Org.),
School mathematics and work (pp. 169-201). London: The
Falmer Press.
Carraher, T.N. (1986). From drawings to buildings: Working with
mathematical scales. International Journal of Behavioral Development,
9, 527-544.
Carraher, T.N., Carraher, D.W. & Schliemann, A.D. (1985). Mathematics
in the streets and in schools. British Journal ofDevelopmental
Psychology, 3, 21-29.
Carraher, T.N., Carraher, D.W. & Schliemann, A.D. (1988). Na
vida, dez; na escola zero - os contextos culturais da aprendizagem
da matemática. São Paulo: Cortez.
Cook-Gumperz, J. (1993). Dilemmas of identity: Oral and written
literacies in the making of a basic writing student. Anthropology
and Education Quarterly, 24, 336-356.
De Ia Rocha, O. (1986). Problems ofsense and problems ofscale:
An ethnographic study of arithmetic in everyday life. Tese de
Doutorado, Universidade da Califórnia, Irvine.
Duveen, G. (1994). Crianças enquanto atores sociais: as representações
sociais em desenvolvimento. Em P. Guarreshi & S.
Jovchelovitch (Orgs.), Textos sobre representações sociais (pp.
261-293). Brasil: Vozes
Eisenhart, M. A. (1988). The ethnographic research tradition and
mathematics education research. Journal for Research in
Mathematics Education, 19 (2), 99-114.
Freire, P. (1972). Pedagogy of the oppressed. Harmondsworth:
Penguin Books.
Gatti, B. A. (1989). Democratização do ensino: uma reflexão sobre
a realidade atual. Em Aberto, (Ano 8, n. 44), 3-8.
Gay, J. & Cole, M. (1967). The newmathematics andan oldculture.
New York: Holt, Rinehart and Winston.
Geertz, C. (1983). Local knowledge. New York: Basic Books.
Greeno, J. G. (1991). Number sense as situated knowing in a
conceptual domain. Journal for Research in Mathematics Education,
22 (3), 170-218.
Lave, J. (1988). Cognition in practice: Mind, mathematics and
culture in everyday life. Cambridge: Cambridge University
Press.
Lave, J. (1990). The culture of acquisition and the practice of
understanding. Em J.W. Stigler, R.A. Shweder & G. Herdt
(Orgs.), Cultural psychology: Essays on comparative human
development (pp. 309-327). Cambridge: Cambridge University
Press.
Lloyd, B. & Duveen, G. (1990). A semiotic analysis of the development
of social representations of gender. Em G. Duveen &
B. Lloyd (Orgs.), Social representations and the development
of knowledge (pp. 27-46). Cambridge: Cambridge University
Press.
Lloyd, B. & Duveen, G. (1992). Gender identities and education:
The impact of starting school. London: Harvester Wheatsheaf.
Moscovici, S. (1981). On social representations. Em J.F. Forgas
(Org.), Social cognition (pp. 181-209). London: Academic
Press.
Murtaugh, M. (1985). The practice of arithmetic by American
grocery shoppers. Anthropology and Education Quarterly, 16,
186-192.
Nunes, T. (1992). Cognitive invariants and cultural variation in
mathematical concepts. International Journal of Behavioral
Development, 75,433-453.
Nunes, T. (no prelo). The socio-cultural context of mathematical
thinking: Research findings and educational implications. Em
A.J. Bishop, K. Hart, S. Lerman & T. Nunes (Orgs.), Significam
influences on children's learning of mathematics. Paris:
UNESCO.
Nunes, T., Schliemann, A. & Carraher, D. (1993). Street mathematics
and school mathematics. Cambridge: Cambridge University
Press.
Piaget, J. (1929). The child's conception of the world. London:
Routledge.
Sáljõ, R. & Wyndhamn, J. (1990). Problem-solving, academic
performance and situated reasoning. A study of joint cognitive
activity in the formal setting. British Journal of Educational
Psychology, 60, 245-254.
Saxe, G.B. (1982). Culture and the development of numerical
cognition: Studies among the Oksapmin of Papua New Guinea.
Em C.G. Brainerd (Org.), Children's logicalandmathematical
cognition (pp. 157-176). New York: Springer-Verlag.
Saxe, G.B. (1990). Culture and cognitive development: Studies in
mathematics understanding. Hillsdale, N.J.: Lawrence
Erlbaum Associates.
Schliemann, A.D. (1984). Schooling versus practice in problem
solving: A study on mathematics among carpenters and carpenters
apprentices. Proceedings of International Congress on
Mathematical Education, 5, 92-95.
Schliemann, A.D. & Nunes, T. (1990). A situated schema of
proportionality. British Journal of Developmental Psychology,
8, 259-269.
Scribner, S. (1984). Studying working intelligence. Em B. Rogoff
& J. Lave (Orgs.), Everyday cognition: Its development in
social context (pp. 9-40). Cambridge, Mass.: Harvard University
Press.
Scribner, S. (1985). Vygotsky's uses of history. Em J.V. Wertsch
(Org.), Culture, communication and cognition: Vygotskian
perspectives (pp. 119-145). Cambridge: Cambridge University
Press.
Scribner, S. & Cole, M. (1981) The psychology ofliteracy. Cambridge,
Mass.: Harvard University Press.
Tajfel, H. (Org.). (1978). Differentiation between social groups:
Studies in social psychology ofintergroup relations (European
Monographs in Social Psychology, 14). London: Academic
Press.
Tajfel, H. (1981). Human groups and social categories. Cambridge:
Cambridge University Press.
Tajfel, H. (1982). Social identity and intergroup relations. Cambridge:
Cambridge University Press.
Wertsch, J. (1991). Voices ofthe mind. London: Harvester Wheatsheaf.

Published

2012-09-24

How to Cite

de Abreu, G. (2012). Mathematics in Everyday Life Versus Mathematics in School:: A Question of Situated Cognition or a Question of Social Identities?. Psicologia: Teoria E Pesquisa, 11(2), 85–93. Retrieved from https://periodicos.unb.br/index.php/revistaptp/article/view/17236