Diferenças na Detecção de Frequências Espaciais e Radiais em Crianças
Palavras-chave:
Percepção visual, Sensibilidade ao contraste, Desenvolvimento visual, Frequência radial e espacial, Método da escolha forçadaResumo
O objetivo deste estudo foi comparar curvas de sensibilidade ao contraste para estímulos radiais (FSCr) e grades senoidais (FSC) de 0,25, 0,5, 1 e 2 cpg em crianças de 6 a 13 anos. Foram mensurados limiares de contraste para 40 crianças, utilizando o método psicofísico da escolha forçada e níveis baixos de luminância. Todas estavam livres de doenças oculares e tinham acuidade visual normal. Os resultados mostraram que a sensibilidade das crianças foi maior para grades senoidais (FSC) do que para estímulos radiais (FSCr). Esses resultados sugerem que esses estímulos podem ser processados por áreas visuais distintas.
Downloads
Referências
Akutsu, H., & Legge, G. E. (1995). Discrimination of compound gratings: Spatial-frequency channels or local features? Vision Research, 35, 2685-2695.
Allen, D., Tyler, C. W., & Norcia, A. M. (1996). Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant. Vision Research, 36, 1945-1953.
Arundale, K. (1978). An investigation into the variation of human contrast sensitivity with age and ocular pathology. British Journal of Ophthalmology, 62, 213-215.
Atkinson, J., Braddick, O., & Braddick, F. (1974). Acuity and contrast sensitivity of infant vision. Nature, 247, 403-404.
Atkinson, J., Braddick, O., & Moar, K. (1977). Contrast sensitivity of the human infant for moving and static patterns. Vision Research, 17, 1045.1047.
Benedek, G., Benedek, K., Kéri, S., & Janáky, M. (2003). The scotopic low-frequency spatial contrast sensitivity develops in children between the ages of 5 and 14 years. Neuroscience Letters, 345, 161-164.
Bour, L. J., & Apkarian, P. (1996). Selective broad-band spatial frequency loss in contrast sensitivity functions. Investigative Ophthalmology & Visual Science, 37, 2475-2484.
Bradley, A., & Freeman, R. D. (1982). Contrast sensitivity in children. Vision Research, 22, 953-959.
Candy, T. R., Crowell, J. A., & Banks, M. S. (1998). Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate. Vision Research, 38, 3857-3870.
Cannon JR, M. W. (1983). Contrast sensitivity: Psychophysical and evoked potential methods compared. Vision Research, 23, 87-95.
Cornsweet, T. N. (1970). Visual perception. New York: Academic Press.
Ellemberg, D., Lewis, T. L., Liu, C. H., & Maurer, D. (1999). Development of spatial and temporal vision during childhood. Vision Research, 39, 2325-2333.
Elliott, D. B., & Situ, P. (1998). Visual acuity versus letter contrast sensitivity in early cataract. Vision Research, 38, 2047-2052.
Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W., & van Essen, D. C. (1996). Neural responses to polar, hyperbolic, and cartesian gratings in area V4 of the macaque monkey. Journal of Neurophysiology, 76, 2718-2739.
Heywood, C. A., Gadotti, A., & Cowey, A. (1992). Cortical area V4 and its role in the perception of color. Journal of Neuroscience, 12, 4056-4065.
John, R. S. (1997). Contrast detection and orientation discrimination thresholds associated with meridional amblyopia. Vision Research, 37, 1451-1457.
Kelly, D. H. (1960). J0 stimulus patterns for vision research. Journal of the Optical Society of America, 50, 1115-1116.
Kelly, D. H. (1982). Motion and vision: IV. Isotropic and anisotropic spatial response. Journal of the Optical Society of America, 72, 432-439.
Kelly, D. H., & Magnuski, H. S. (1975). Pattern detection and the two dimensional Fourier transform: Circular targets. Vision Research, 15, 911-915.
Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral córtex. Journal of Neurophysiology, 71, 856-867.
Merigan, W. H. (1996). Basic visual capabilities and shape discrimination after lesions of extrastriate area V4 in macaques. Visual Neuroscience, 13, 51-60.
Montés-Micó, R., & Ferrer-Blasco, T. (2001). Contrast sensitivity function in children: Normalized notation for the assessment and diagnosis of diseases. Documenta Ophthalmologica, 103, 175-186.
Norcia, A. M., Tyler, C. W., & Hamer, R. D. (1990). Development of contrast sensitivity in the human infant. Vision Research, 30, 1475-1486.
O`Donnell, B. F., Nestor, P. G., Potts, G. F., Stylianopoulos, K. C., Shenton, M. E., & McCarley, R. W. (2002). Spatial frequency discrimination in schizophrenia. Journal of Abnormal Psychology, 111, 620-625.
Peterzell, D. H., Werner, J., & Kaplan, P. S. (1995). Individual differences in contrast sensitivity functions: Longitudinal study of 4-, 6- and 8-month-old human infants. Vision Research, 35, 961-979.
Santos, N. A., Oliveira, A. B., Nogueira, R. M. T. B. L., & Simas, M. L. B. (2006). Mesopic radial frequency contrast sensitivity function for young and older adults. Brazilian Journal of Medical and Biological Research, 39, 791-794.
Santos, N. A., & Simas, M. L. B. (2002). Percepção e processamento visual da forma em humanos: filtros de frequências radiais de 1 e 4 cpg. Psicologia: Reflexão & Crítica, 15, 383-391.
Simas, M. L. B., Nogueira, R. M. T. B. L., & Santos, N. A. (2005). Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms. Brazilian Journal of Medical and Biological Research, 38, 419-430.
Simas, M. L. B., & Santos, N. A. (2002). Narrow-band 1, 2, 3, 4, 8, 16 and 24 cycles/360o angular frequency filters. Brazilian Journal of Medical and Biological Research, 35, 243-253.
Simas, M. L. B., Santos, N. A., & Thiers, F. A. (1997). Contrast sensitivity to angular frequency stimuli is higher than that for sine-wave gratings in the respective middle range. Brazilian Journal of Medical and Biological Research, 30, 633-636.
Slaghuis, W. L., & Thompson, A. K. (2003). The effect of peripheral visual motion on focal contrast sensitivity in positive- and negative-symptom schizophrenia. Neuropsychologia, 41, 968-980.
Van Sluyters, R. C., Atkinson, M. S., Held, R. M., Hoffman, K., & Shatz, C. J. (1990). The development of vision and visual perception. Em S. W. Spillmann & J. S. Werner (Orgs.), Visual perception: The neurophysiological foundations (pp. 349-379). New York: Academic Press.
Vleugels, L., van Nunen, A., Lafosse, C., Ketelaer, P., & Vandenbussche, E. (1998). Temporal and spatial resolution in foveal vision of multiple sclerosis patients. Vision Research, 38, 2987-2997.
Wetherill, G. B., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. The British Journal of Mathematical and Statistical Psychology, 48, 1-10.
Wilkinson, F., James, T. W., Wilson, H. R., Gati, J. S., Menon, E. S., & Goodale, M. A. (2000). An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Current Biology, 10, 1455-1458.
Wilson, H. R., Levi, D., Maffei, L., Rovamo, J., & De Valois, R. (1990). The perception of form: Retina to striate cortex. Em S. W. Spillmann & J. S. Werner (Orgs.), Visual perception: The neurophysiological foundation (pp. 231-271). New York: Academic Press.
Wilson, H. R., & Wilkinson, F. (1998). Detection of global structure in glass patterns: Implications for form vision. Vision Research, 38, 2933-2947.
Wilson, R. W., Wilkinson, F., & Asaad, W. (1997). Concentric orientation summation in human form vision. Vision Research, 37, 2325-2330.