IMPLEMENTATION OF GENERIC METHODOLOGY WITH SDPD IN PROBLEMS FOR MICROFLUIDIC DEVICES
DOI:
https://doi.org/10.26512/ripe.v2i21.21698Palavras-chave:
Meshless. Microfluidic devices. Smoothed Dissipative Particle Dynamics.Resumo
This paper proposes the formulation and application of classical hydrodynamics problem using GENERIC methodology in a solution based on the SPH. This meshless particle solution is called Smoothed Dissipative Particle Dynamics (SDPD), which simulate situations of micro-fluids in the mesoscopic flow scale. Furthermore, we implemented a surface-tension formulation for the Continuum Surface Force (CSF) method in bi-phase, commonly used for capillarity modelling applications in micro-device and micro-liquids. The validation of the simulator has been performed with the cases in Poiseuille Flow, Couette Flow, one single droplet impacting on a liquid film and bi-phase flows in microfluidic devices.
Downloads
Referências
Adami, S., Hu, X., and Adams, N. (2010). A new surface-tension formulation for multi-phase
SPH using a reproducing divergence approximation. J. Comput. Phys., 229(13):5011”“5021.
Adami, S., Hu, X., and Adams, N. (2012). A generalized wall boundary condition for smoothed
particle hydrodynamics. J. Comput. Phys., 231(21):7057”“7075.
Anderson, J. a., Lorenz, C. D., and Travesset, A. (2008). General purpose molecular dynamics
simulations fully implemented on graphics processing units. J. Comput. Phys., 227(10):5342”“
Cheng, J., Kricka, L., Sheldon, E., andWilding, P. (1998). Sample preparation in microstructured
devices. Microsyst. Technol. Chem. Life Sci., 194.
Crespo, A. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M., and Rogers, B. D. (2011).
GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle
hydrodynamics methods. PLoS One, 6(6):e20685.
Ellero, M. and Tanner, R. (2005). SPH simulations of transient viscoelastic flows at low Reynolds
number. J. Nonnewton. Fluid Mech., 132(1-3):61”“72.
Espanol, P. (2002). Dissipative particle dynamics revisted. SIMU ’Challenges Mol. simulations’
Newsl., (4).
Español, P. and Revenga, M. (2003). Smoothed dissipative particle dynamics. Phys. Rev. E,
(2):1”“12.
Español, P., Serrano, M., and Zuñiga, I. (1997). Coarse-graining of a fluid and its relation with
dissipative particle dynamics and smoothed particle dynamic. Int. J. Mod. . . . , 8(4):899”“908.
Filipovic, N., Ivanovic, M., and Kojic, M. (2008). A comparative numerical study between
dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple
unsteady flows in microfluidics. Microfluid. Nanofluidics, 7(2):227”“235.
Flekkoy, E., Coveney, P. V. P., De Fabritiis G, Flekko, E. G., and Fabritiis, G. D. (2000).
Foundations of dissipative particle dynamics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat.
Interdiscip. Topics, 62(2 Pt A):2140”“57.
Gingold, R. and Monaghan, J. (1982). Kernel estimates as a basis for general particle methods
in hydrodynamics. J. Comput. Phys., 46(3):429”“453.
Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. a., and Crespo, A. J. (2010). State-of-the-art
of classical SPH for free-surface flows. J. Hydraul. Res., 48(sup1):6”“27.
Gray, J. and Monaghan, J. (2003). Caldera collapse and the generation of waves. Geochemistry
Geophys. Geosystems.
Grmela, M. and Öttinger, H. H. (1997). Dynamics and thermodynamics of complex fluids. I.
Development of a general formalism. Phys. Rev. E, 56(6):6620”“6632.
Hoogerbrugge, P., Koelman, J., Search, H., Journals, C., Contact, A., Iopscience, M., and
Address, I. P. (2007). Simulating microscopic hydrodynamic phenomena with dissipative
particle dynamics. EPL (Europhysics Lett., 155.
Hu, X. X. Y. and Adams, N. a. (2006). A multi-phase SPH method for macroscopic and
mesoscopic flows. J. Comput. Phys., 213(2):844”“861.
Jiang, T., Ouyang, J., Li, X., Ren, J., and Wang, X. (2013). Numerical study of a single drop
impact onto a liquid film up to the consequent formation of a crown. J. Appl. Mech. Tech.
Phys., 54(5):720”“728.
Li, J., Ge, W., Wang, W., Yang, N., Liu, X., Wang, L., He, X., Wang, X., Wang, J., and Kwauk,
M. (2013). From Multiscale Modeling to Meso-Science. Springer Berlin Heidelberg, Berlin,
Heidelberg.
Litvinov, S., Ellero, M., Hu, X., and Adams, N. (2010). A splitting scheme for highly dissipative
smoothed particle dynamics. J. Comput. Phys., 229(15):5457”“5464.
Liu, M., Meakin, P., and Huang, H. (2007). Dissipative particle dynamics simulation of multiphase
fluid flow in microchannels and microchannel networks. Phys. Fluids, 19(3):033302.
Liu, M. B. and Liu, G. R. (2004). Meshfree particle simulation of micro channel flows with
surface tension. Comput. Mech., 35(5):332”“341.
Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J.,
:1013.
Monaghan, J. (1992). Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys.,
(1):543”“574.
Monaghan, J. (2012). Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu.
Rev. Fluid Mech., 44(1):323”“346.
Morris, J. P. (2000). Simulating surface tension with smoothed particle hydrodynamics. Int. J.
Numer. Methods Fluids, 33(3):333”“353.
Morris, J. P., Fox, P. J., and Zhu, Y. (1997). Modeling Low Reynolds Number Incompressible
Flows Using SPH. J. Comput. Phys., 136(1):214”“226.
Nair, P. and Tomar, G. (2014). An improved free surface modeling for incompressible SPH.
Comput. Fluids, 102:304”“314.
Nisar, A., Afzulpurkar, N., Mahaisavariya, B., and Tuantranont, A. (2008). MEMS-based
micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem.,
(2):917”“942.
Nugent, S. and Posch, H. (2000). Liquid drops and surface tension with smoothed particle
applied mechanics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 62(4
Pt A):4968”“75.
Ottinger, H. and Grmela, M. (1997). Dynamics and thermodynamics of complex fluids. II.
Illustrations of a general formalism. Phys. Rev. E, 56(6):6620”“6632.
Quesada, A. V. (2010). Micro-reología computacional. PhD thesis, National Distance Education
University.
Sigalotti, L. D. G., Klapp, J., Sira, E., Meleán, Y., and Hasmy, A. (2003). SPH simulations of
time-dependent Poiseuille flow at low Reynolds numbers. J. Comput. Phys., 191(2):622”“638.
Sigalotti, L. D. G. and López, H. (2008). Adaptive kernel estimation and SPH tensile instability.
Comput. Math. with Appl., 55(1):23”“50.
Sukop, M. and Thorne, D. (2006). Lattice Boltzmann Modeling, volume 79. Springer.
Tong, M. and Browne, D. J. (2014). An incompressible multi-phase smoothed particle hydrodynamics
(SPH) method for modelling thermocapillary flow. Int. J. Heat Mass Transf.,
:284”“292.
Tripp, G. I. and Vearncombe, J. R. (2004). Fault/fracture density and mineralization: A contouring
method for targeting in gold exploration. J. Struct. Geol., 26(6-7):1087”“1108.
Vázquez-Quesada, A., Ellero, M., and Español, P. (2009). Consistent scaling of thermal
fluctuations in smoothed dissipative particle dynamics. J. Chem. Phys., 130(3):034901.
Vázquez-Quesada, A., Ellero, M., and Español, P. (2012). A SPH-based particle model for
computational microrheology. Microfluid. Nanofluidics, 13(2):249”“260.
Violeau, D. (2012). Fluid Mechanics and the SPH method: theory and applications, volume
OXFORD UNIVERSITY PRESS, Oxford.
Xu, X., Ouyang, J., Jiang, T., and Li, Q. (2014). Numerical analysis of the impact of two droplets
with a liquid film using an incompressible SPH method. J. Eng. Math., 85(1):35”“53.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.