IMPLEMENTATION OF GENERIC METHODOLOGY WITH SDPD IN PROBLEMS FOR MICROFLUIDIC DEVICES
DOI:
https://doi.org/10.26512/ripe.v2i21.21698Keywords:
Meshless. Microfluidic devices. Smoothed Dissipative Particle Dynamics.Abstract
This paper proposes the formulation and application of classical hydrodynamics problem using GENERIC methodology in a solution based on the SPH. This meshless particle solution is called Smoothed Dissipative Particle Dynamics (SDPD), which simulate situations of micro-fluids in the mesoscopic flow scale. Furthermore, we implemented a surface-tension formulation for the Continuum Surface Force (CSF) method in bi-phase, commonly used for capillarity modelling applications in micro-device and micro-liquids. The validation of the simulator has been performed with the cases in Poiseuille Flow, Couette Flow, one single droplet impacting on a liquid film and bi-phase flows in microfluidic devices.
Downloads
References
Adami, S., Hu, X., and Adams, N. (2010). A new surface-tension formulation for multi-phase
SPH using a reproducing divergence approximation. J. Comput. Phys., 229(13):5011”“5021.
Adami, S., Hu, X., and Adams, N. (2012). A generalized wall boundary condition for smoothed
particle hydrodynamics. J. Comput. Phys., 231(21):7057”“7075.
Anderson, J. a., Lorenz, C. D., and Travesset, A. (2008). General purpose molecular dynamics
simulations fully implemented on graphics processing units. J. Comput. Phys., 227(10):5342”“
Cheng, J., Kricka, L., Sheldon, E., andWilding, P. (1998). Sample preparation in microstructured
devices. Microsyst. Technol. Chem. Life Sci., 194.
Crespo, A. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M., and Rogers, B. D. (2011).
GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle
hydrodynamics methods. PLoS One, 6(6):e20685.
Ellero, M. and Tanner, R. (2005). SPH simulations of transient viscoelastic flows at low Reynolds
number. J. Nonnewton. Fluid Mech., 132(1-3):61”“72.
Espanol, P. (2002). Dissipative particle dynamics revisted. SIMU ’Challenges Mol. simulations’
Newsl., (4).
Español, P. and Revenga, M. (2003). Smoothed dissipative particle dynamics. Phys. Rev. E,
(2):1”“12.
Español, P., Serrano, M., and Zuñiga, I. (1997). Coarse-graining of a fluid and its relation with
dissipative particle dynamics and smoothed particle dynamic. Int. J. Mod. . . . , 8(4):899”“908.
Filipovic, N., Ivanovic, M., and Kojic, M. (2008). A comparative numerical study between
dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple
unsteady flows in microfluidics. Microfluid. Nanofluidics, 7(2):227”“235.
Flekkoy, E., Coveney, P. V. P., De Fabritiis G, Flekko, E. G., and Fabritiis, G. D. (2000).
Foundations of dissipative particle dynamics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat.
Interdiscip. Topics, 62(2 Pt A):2140”“57.
Gingold, R. and Monaghan, J. (1982). Kernel estimates as a basis for general particle methods
in hydrodynamics. J. Comput. Phys., 46(3):429”“453.
Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. a., and Crespo, A. J. (2010). State-of-the-art
of classical SPH for free-surface flows. J. Hydraul. Res., 48(sup1):6”“27.
Gray, J. and Monaghan, J. (2003). Caldera collapse and the generation of waves. Geochemistry
Geophys. Geosystems.
Grmela, M. and Öttinger, H. H. (1997). Dynamics and thermodynamics of complex fluids. I.
Development of a general formalism. Phys. Rev. E, 56(6):6620”“6632.
Hoogerbrugge, P., Koelman, J., Search, H., Journals, C., Contact, A., Iopscience, M., and
Address, I. P. (2007). Simulating microscopic hydrodynamic phenomena with dissipative
particle dynamics. EPL (Europhysics Lett., 155.
Hu, X. X. Y. and Adams, N. a. (2006). A multi-phase SPH method for macroscopic and
mesoscopic flows. J. Comput. Phys., 213(2):844”“861.
Jiang, T., Ouyang, J., Li, X., Ren, J., and Wang, X. (2013). Numerical study of a single drop
impact onto a liquid film up to the consequent formation of a crown. J. Appl. Mech. Tech.
Phys., 54(5):720”“728.
Li, J., Ge, W., Wang, W., Yang, N., Liu, X., Wang, L., He, X., Wang, X., Wang, J., and Kwauk,
M. (2013). From Multiscale Modeling to Meso-Science. Springer Berlin Heidelberg, Berlin,
Heidelberg.
Litvinov, S., Ellero, M., Hu, X., and Adams, N. (2010). A splitting scheme for highly dissipative
smoothed particle dynamics. J. Comput. Phys., 229(15):5457”“5464.
Liu, M., Meakin, P., and Huang, H. (2007). Dissipative particle dynamics simulation of multiphase
fluid flow in microchannels and microchannel networks. Phys. Fluids, 19(3):033302.
Liu, M. B. and Liu, G. R. (2004). Meshfree particle simulation of micro channel flows with
surface tension. Comput. Mech., 35(5):332”“341.
Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J.,
:1013.
Monaghan, J. (1992). Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys.,
(1):543”“574.
Monaghan, J. (2012). Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu.
Rev. Fluid Mech., 44(1):323”“346.
Morris, J. P. (2000). Simulating surface tension with smoothed particle hydrodynamics. Int. J.
Numer. Methods Fluids, 33(3):333”“353.
Morris, J. P., Fox, P. J., and Zhu, Y. (1997). Modeling Low Reynolds Number Incompressible
Flows Using SPH. J. Comput. Phys., 136(1):214”“226.
Nair, P. and Tomar, G. (2014). An improved free surface modeling for incompressible SPH.
Comput. Fluids, 102:304”“314.
Nisar, A., Afzulpurkar, N., Mahaisavariya, B., and Tuantranont, A. (2008). MEMS-based
micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem.,
(2):917”“942.
Nugent, S. and Posch, H. (2000). Liquid drops and surface tension with smoothed particle
applied mechanics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 62(4
Pt A):4968”“75.
Ottinger, H. and Grmela, M. (1997). Dynamics and thermodynamics of complex fluids. II.
Illustrations of a general formalism. Phys. Rev. E, 56(6):6620”“6632.
Quesada, A. V. (2010). Micro-reología computacional. PhD thesis, National Distance Education
University.
Sigalotti, L. D. G., Klapp, J., Sira, E., Meleán, Y., and Hasmy, A. (2003). SPH simulations of
time-dependent Poiseuille flow at low Reynolds numbers. J. Comput. Phys., 191(2):622”“638.
Sigalotti, L. D. G. and López, H. (2008). Adaptive kernel estimation and SPH tensile instability.
Comput. Math. with Appl., 55(1):23”“50.
Sukop, M. and Thorne, D. (2006). Lattice Boltzmann Modeling, volume 79. Springer.
Tong, M. and Browne, D. J. (2014). An incompressible multi-phase smoothed particle hydrodynamics
(SPH) method for modelling thermocapillary flow. Int. J. Heat Mass Transf.,
:284”“292.
Tripp, G. I. and Vearncombe, J. R. (2004). Fault/fracture density and mineralization: A contouring
method for targeting in gold exploration. J. Struct. Geol., 26(6-7):1087”“1108.
Vázquez-Quesada, A., Ellero, M., and Español, P. (2009). Consistent scaling of thermal
fluctuations in smoothed dissipative particle dynamics. J. Chem. Phys., 130(3):034901.
Vázquez-Quesada, A., Ellero, M., and Español, P. (2012). A SPH-based particle model for
computational microrheology. Microfluid. Nanofluidics, 13(2):249”“260.
Violeau, D. (2012). Fluid Mechanics and the SPH method: theory and applications, volume
OXFORD UNIVERSITY PRESS, Oxford.
Xu, X., Ouyang, J., Jiang, T., and Li, Q. (2014). Numerical analysis of the impact of two droplets
with a liquid film using an incompressible SPH method. J. Eng. Math., 85(1):35”“53.
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.