SIMULAÇÃO DE INTERAÇÃO FLUIDO-ESTRUTURA EM DUTOS COM ESCOAMENTO INTERNO UTILIZANDO SOFTWARE LIVRE
DOI:
https://doi.org/10.26512/ripe.v2i35.21412Keywords:
Interação fluido-estrutura. Não linearidades geométricas. Formulação ALE. Dinâmica estrutural. Dinâmica dos fluidos.Abstract
Neste artigo será apresentado o desenvolvimento numérico para análise de sistemas de tubulações com escoamento interno incluindo os efeitos da interação fluido-estrutura (FSI) por meio da técnica particionada. O Método dos Volumes Finitos (MVF) é empregado para o escoamento, no qual o fluido será considerado incompressível. Será adotada uma formulação Lagrangeana-Euleriana Arbitrária (ALE) para descrever o movimento da interface fluido-estrutura. O Método dos Elementos Finitos (MEF) é empregado para a tubulação, considerando os efeitos das não linearidades geométricas. O problema será considerado com um acoplamento forte, sendo utilizada uma abordagem de solução bidirecional, na qual o equilíbrio é considerado na posição deformada. A simulação será realizada com o auxílio de pacotes computacionais livres e com código aberto. Para a análise do escoamento será empregado o software Code_Saturne, que é baseado no MVF e apresenta em seu ambiente a formulação ALE implementada. Para a análise da estrutura será empregado o software Code_Aster, baseado no MEF. O acoplamento entre os dois softwares será feito por meio de uma programação em linguagem Python. Os resultados obtidos indicam a viabilidade da metodologia adotada.
Downloads
References
Au-Yang, M.K. & Galford, J.E., 1982. Fluid-structure interaction ”“ A survey with emphasis
on its application to nuclear steam system design. Nuclear Engineering and Design, v. 70, p.
”“399.
Bathe, K.J., 1996. Finite Element Procedures. New Jersey: Prentice-Hall.
Dym, C.L. & Shames, I.H., 1973. Solid Mechanics: A variational Approach. Tokyo:
McGraw-Hill.
Dodds, H.L. & Runyan H.L., 1965. Effect of high-velocity fluid flow on the bending
vibrations and static divergence of a simply supported pipe. Nasa Techinical Note.
Donea, J.; Huerta, A.; Ponthot, J. & Rodríguez-Ferran, A., 2004. Arbitrary Lagrangian-
Eulerian methods. Encyclopedia of Computational Mechanics, n. 1969, p. 1”“38.
Ghia, U.; Ghia, K. & Shin, C., 1982. High-Re solutions for incompressible flow using the
Navier-Stokes equations and a multigrid method. Journal of Computational Physics, v. 48, p.
”“411.
Haase, W., 2001. Unsteady aerodynamics including fluid/structure interaction. Air & Space
Europe, v. 3, n. 3-4, p. 83”“86.
Heil, M., 2004. An efficient solver for the fully coupled solution of large-displacement fluidstructure
interaction problems. Computer Methods in Applied Mechanics and Engineering, v.
, n. 1-2, p. 1”“23.
Holmes, P.J., 1977. Bifurcations to Divergence and Flutter Dimensional in Flow-Induced
Oscillations: A Finite Dimensional Analysis. Journal of Sound and Vibration, v. 53, n. 4, p.
”“503.
Hübner, B.; Seidel, U. & Roth, S., 2010. Application of fluid-structure coupling to predict the
dynamic behavior of turbine components. IOP Conference Series: Earth and Environmental
Science, v. 12, p.1”“10.
Jo, J.C., 2004. Fluid-Structure Interactions. Nota técnica.
Kim, H.; Lee, S.; Son, E.; Lee, S. & Lee, S., 2012. Aerodynamic noise analysis of large
horizontal axis wind turbines considering fluid-structure interaction. Renewable Energy, v.
, p. 46”“53.
Liu, J.M.; Lu, C.J. & Xue, L.P., 2008. Investigation of Airship Aeroelasticity Using Fluid-
Structure Interaction. Journal of Hydrodynamics, v. 20, n. 2, p. 164”“171.
Modarres-Sadeghi, Y. & Païdoussis, M.P., 2009. Nonlinear dynamics of extensible fluidconveying
pipes, supported at both ends. Journal of Fluids and Structures, v. 25, n. 3, p. 535”“
Oliveira, F.M., 2012. Análise Dinâmica Não Linear de Problemas Envolvendo Massas
Móveis Aplicadas em Cabos e Elementos de Viga. Dissertação de mestrado. Universidade
Federal de Minas Gerais.
Païdoussis, M.P., 1998. Fluid-Structure Interactions: Slender Structures and Axial Flow.
California: Academic Press. v. 53
Païdoussis, M.P. & Issid, N.T., 1974. Dynamic Stability of Pipes Conveying Fluid. Journal of
Sound and Vibration, v. 33, n. 3, p. 267”“294.
Ramírez, L.; Nogueira, X.; Khelladi, S.; Chassaing, J.C. & Colominas, I., 2014. A new
higher-order finite volume method based on Moving Least Squares for the resolution of the
incompressible Navier”“Stokes equations on unstructured grids. Computer Methods in Applied
Mechanics and Engineering, v. 278, p. 883”“901.
Tijsseling, A.S., 2007. Water hammer with fluid-structure interaction in thick-walled pipes.
Computers and Structures, v. 85, p. 844”“851.
Van Zuijlen, A.H. & Bijl, H., 2006. Multi-Level Accelerated Sub-Iterations for Fluid-Struture
Interaction. In: Bungartz, H.J.; Mehl, M.; Schäfer, M., eds, Fluid-structure interaction II:
modelling, simulation, optimisation. p. 1”“25, Springer.
Versteeg, H.K. & Malalasekera, W., 2007. An Introduction to Computational Fluid Dynamics
- The Finite Volume Method. 2. ed. Glasgow: Pearson Education.
Vierendeels, J.; Dumont, K. &Verdonck, P.R., 2008. A partitioned strongly coupled fluidstructure
interaction method to model heart valve dynamics. Journal of Computational and
Applied Mathematics, v. 215, n. 2, p. 602”“609.
Wadham-Gagnon, M.; Païdoussis, M.P. & Semler, C., 2007. Dynamics of cantilevered pipes
conveying fluid. Part 1: Nonlinear equations of three-dimensional motion. Journal of Fluids
and Structures, v. 23, n. 4, p. 545”“567.
White, F.M., 2006. Viscous Fluid Flow. 3. ed. New York: Mc Graw Hill.
Wiggert, D.C. & Tijsseling, A.S., 2001. Fluid transients and fluid-structure interaction in
flexible liquid-filled piping. Applied Mechanics Reviews, v. 54, n. 5, p. 455.
Zienkiewicz, O.C. & Taylor, R.L., 2000. The Finite Element Method Volume 1 : The Basis, v.
, p. 708.
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.