ESTUDO DO ENRIQUECIMENTO POLINOMIAL PARA ANÁLISE DE ESTRUTURAS EM PROCESSO DE DANIFICAÇÃO
DOI:
https://doi.org/10.26512/ripe.v2i14.21374Keywords:
MEFG. Enriquecimento Polinomial. Mecânica do Dano Contínuo. Materiais quasi-frágeis.Abstract
Este trabalho teve como objetivo implementar funções de enriquecimento polinomiais, conforme a estratégia do Método dos Elementos Finitos Generalizados (MEFG), para aplicação em simulações de problemas de falhas em estruturas utilizando um modelo de dano bilinear. Os resultados foram verificados através da comparação com curvas experimentais retirados do ensaio de flexão em três pontos em viga com entalhe central. Comprovou-se, então, a eficiência e acurácia do MEFG polinomial em melhorar a previsão do comportamento de ruptura em detrimento de uma análise de Elementos Finitos. Esta qualidade tornou-se mais evidente nas simulações com malhas muito grosseiras, visto que apresentaram resultados com precisão equivalente a outros encontrados na literatura, porém, com uma quantidade muito inferior de elementos.
Downloads
References
Alves, G. D. S. Implementação do Método dos Elementos Finitos Generalizados com aplicação em materiais compósitos. Dissertação de Mestrado. Brasília: Universidade de Brasília, 2014
Babuška, I.; Caloz, G.; Osborn, J. E. Special finite element method for a class second order elliptic problems with rough coefficients. SIAM Journal on Numerical Analysis, v. 31, n. 4, 1994. p. 945 ”“ 981.
Barros, F. B.; Proença, S. B. P.; Barcellos, C. S. de. Generalized Finite Element Method in Structural Nonlinear Analysis. Computational Mechanics, Alemanha, v. 33, n.2, p. 95-107, 2004.
Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering. Vol. 45, No. 5, pp. 601-602. 1999.
Camacho, G. T.; Ortiz, M. Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures, v. 33, p. 2899”“2938, 1996.
Duarte, C. A. A Review of Some Meshless Methods to Solve Partial Differencial Equations. Technical Report 06, 1995.
Duarte, C. A.; Liszka, T. J.; Tworzydlo, W. W. Clustered generalized finite element methods for mesh unrefinement, non-matching and invalid meshes. International Journal for Numerical Methods in Engineering, 2006.
Elices, M.; Guinea , G.V.; Gómez ,J.; Planas , J. The cohesive zone model: advantage, limitations and challenges. Engineering Fracture Mechanics, 69 (2002), pp. 137”“163. 2002.
Evangelista JR, F.; Roesler, J. R.; Duarte, C. A. Two scale Approach Predict Multi-Site Cracking Potential in 3-D Structures using the Generalized Finite Element Method. Internationsl Journal of Solids and Structures, v. 50, p. 1991-2002, 2013a.
Evangelista Jr., F.; Roesler, J. R.; Proença, S. P. B. Three-dimensional cohesive zone model for fracture of cementitious materials based on the thermodynamics of irreversible processes. Engineering Fracture Mechanics, v. 97, p. 261-280, 2013b.
Gaedicke, C.; Roesler, J. Fracture-Based Method to Determine Flexural Capacity of Concrete Beams on Soil. Road Materials and Pavement Design, v. 11, n. 2, p. 361 ”“ 385, 2010
Geers, M. G. D. Experimental Analysis and Computational Modelling of Damage and Fracture. PhD thesis, Eindhoven University of Technology, 1997.
Hofstetter G.; Meschke G. Numerical modeling of concrete cracking. International Centre for Mechanical Sciences. vol. 532. Springer Wien New York, 2011. ISBN:987-3-7091-0896-3 [chapter 1].
Lemaitre, J.; Chaboche, J. L. Mechanics of solid materials. Cambrige University Press, 1990.
Mariani, S, Perego U. Extended finite element method for quasi-brittle fracture. International Journal for Numerical Methods in Engineering, 58(1):103”“26, 2003.
Mazars, J.; Pijaudier-Cabot, G. Continuum damage theory - application to concrete. Journal of Engineering Mechanics, 115:345.365, 1989.
Moreira, J. F. A. Modelo bidimensional contínuo-descontínuo de falha para materiais quasi-frágeis em modo I e modo misto. Dissertação de Mestrado em Estruturas e Construção Civil, Publicação E.DM-05A/16, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 92p. 2016
Oliver, J. A consistent characteristic length for smeared cracking models. International Journal of Numerical Methods in Engineering, vol.28, n. 2, p.461-474, 1989.
Ortiz, M.; Pandolfi, A. Finite-deformation irreversible cohesive elements for threedimensional crack-propagation analysis. International Journal for Numerical Methods in Engineerin, 44: 1267-1282, 1999.
Park, K.; Paulino, G. H.; Roesler, J. R. A unified potential-based cohesive model of mixed-mode fracture, Journal of the Mechanics and Physics of Solids, v. 57, n. 6, p. 891-908, 2009.
Planas, J.;Elices, M. Shrinkage eigenstresses and structural size-effect, in Fracture Mechanics of Concrete Structures (ed Z. P. Bazant) Elsevier Applied Science, 939 - 950. London, 1992
Proença, S. P. B.; Torres, I. Generalized Finite Element method for Nonlinear Three dimensional Analysis of Solids. International Journal of Computational Methods, v. 5, p. 37-62, 2008.
Roesler, J. R.; Paulino, G. H.; Park, K.; Gaedicke, C. Concrete Fracture Prediction Using Bilinear Softening. Cement and Concrete Composites, Vol. 29, No. 4, pp. 300-312, 2007a.
Roesler, J. R.; Paulino, G. H.; Gaedicke, C.; Bordelon, A.; Park, K. Fracture behavior of functionally graded concrete materials for rigid pavements. Transp Res Rec, 2037:40”“50, 2007b.
Schlangen E. Experimental and numerical analysis of fracture processes in concrete. Ph.D. Thesis, Delft University of Technology, 1993.
Simone, A. Continuous discontinuous modeling of failure. Ph.D. thesis. University of Delft, The Netherlands, 2003.
Strouboulis, T.; Copps, K.; Babuska, I. The generalized finite element method. Computer methods in applied mechanics and engineering, 2000
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.