MÉTODO DOS ELEMENTOS FINITOS GENERALIZADOS COM ENRIQUECIMENTO DE INTERFACE PARA MATERIAIS COMPÓSITOS
DOI:
https://doi.org/10.26512/ripe.v2i14.21369Palavras-chave:
MEF. MEFG. Interface. Materiais Compósitos.Resumo
Este artigo tem como objetivo apresentar uma formulação não convencional do método dos elementos finitos (MEF). O método dos elementos finitos generalizados (MEFG) foi formulado a fim de melhorar a aproximação dos problemas de valor de contorno com soluções descontínuas devido a diferentes interfaces de materiais. Foi apresentado uma técnica levando em consideração a interface do material em compósitos sem a correspondência da malha de elementos finitos com o contorno dos diferentes materiais nos membros estruturais: chapas com dois materiais e compósitos heterogêneos (matriz e inclusões). Os resultados foram comparados com soluções simuladas pelo MEF, mostrando a eficiência do método e modelo proposto. A estratégia demonstrou potencial para resolver problemas com gradiente descontínuo causado pela interface material.
Downloads
Referências
Babuška, I.,Caloz, G., & Osborn, J. E., 1994. Special finite element method for a class second order elliptic problems with rough coefficients. SIAM Journal on Numerical Analysis, vol. 31,n. 4, p. 945 ”“ 981.
Babuška, I., & Melenk, J. M., 1997. The partition of unity method. International Journal for Numerical Methos in Engineering, vol. 40, p. 727-758.
Bathe, K. J., 1996. Finite element procedures. [S.I.]: Prentice-Hall, Inc., ISBN 0-13-301458-4.
Belytschko, T., & Black, T., 1999. Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, vol. 45, No. 5, pp. 601-620.
Duarte, C. A., Babuška, I., & Oden, J. T., 2000. Generalized finite element methods for three-dimensional Structural mechanics problems. Computers & Structures, vol. 77, n. 2, p. 215-232.
Duarte, C. A., & Kim, D .J., 2008. Analysis and applications of a generalized finite element method with global- local enrichment functions. Computer Methods in Applied Mechanics and Engineering, vol. 197, p. 487-504.
Duarte, C. A., & Oden, J. T., 1995. Hp clouds ”“ a meshless method to solve boundary value problem. Technical Report 9505, TICAM, University of Texas at Austin.
Duarte, C. A. & Oden, J. T., 1996. An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, vol. 139, n. 1”“4, p. 237-262.
Kim, D. J., Duarte, C. A., & Pereira, J.P., 2008. Analysis of interacting cracks using the generalized finite element method with global local enrichment functions. ASME Journal of Applied Mechanics, vol. 75, pp. 763-813.
Kim, D. J., Pereira, J.P., & Duarte, C. A., 2010. Analysis of three-dimensional fracture mechanics problems: A two-scale approach using coarse-generalized FEM meshes. International Journal for Numerical Methods in Engineeriing, vol. 81, pp. 335-365.
Melenk, J. M. & Babuška, I., 1996. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, vol. 139, n. 1”“4, p. 289-314.
Moës, N., Dolbow, J., & Belytschko, T., 1999. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineeriing, vol. 46, pp. 131-150.
Oden, J. T., Duarte, C.A.; & Zienkiewicz, O. C., 1998. A new cloud-basedhp finite element method. Computer methods in applied mechanics and engineering, vol. 153, pp. 117-126.
Plews, J., Duarte, C. A., & Eason, T., 2012. An Improved Non-Intrusive Global-Local Approach for Sharp Thermal Gradients in a Standard FEA Platform, International Journal for Numerical Methods in Engineering, vol. 91, n. 4, pp. 426-449.
Plews, J., & Duarte, C. A., 2015. Bridging Multiple Structural Scales with a Generalized Finite Element Method. International Journal for Numerical Methods in Engineering, vol. 102, n. 3-4, pp. 180-201.
Reddy, J. N. , 2006. An Introduction to the Finite Element Method 3rd ed: Mc Graw-Hill series in mechanical engineering. Inc., ISBN 0-07-246685-5.
Soghrati, S., Aragón, A. M., Duarte, C.A., & Geubelle, P. H., 2012. An interface-enriched generalized FEM for problems with discontinuous gradient fields. International Journal for numerical methods in engineering, vol. 89, pp. 991-1008.
Soghrati, S., Duarte, C. A., & Geubelle, P. H., 2015. An adaptive interface-enriched generalized FEM for the treatment of problems with curved interfaces. International Journal for numerical method in engineering, vol. 102, n. 6, pp. 1352-1370.
Soghrati, S., & Geubelle, P. H., 2012. An 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries. Comput. Methods Appl. Mech. Engrg, n. 217-220, pp. 46-57.
Strouboulis, T., Babuška, I. & Copps, K., 2000. The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, v. 181, n. 1”“3, p. 43-69.
Zienkiewicz, O. C., Taylor, R. L. & Zhu, J. Z., 2005. Finite Element Methods ”“ Its Basic and Fundamentals 6th ed. Elsevier, Inc., ISBN 0-7506-6320-0.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.