IMPLEMENTATION OF GENERIC METHODOLOGY WITH SDPD IN PROBLEMS FOR MICROFLUIDIC DEVICES

Autores

  • Edgar Andres Patino-Narino UNICAMP
  • Hugo Sakai Idagawa UNICAMP
  • Luiz Otavio Saraiva Ferreira UNICAMP

DOI:

https://doi.org/10.26512/ripe.v2i21.21698

Palavras-chave:

Meshless. Microfluidic devices. Smoothed Dissipative Particle Dynamics.

Resumo

This paper proposes the formulation and application of classical hydrodynamics problem using GENERIC methodology in a solution based on the SPH. This meshless particle solution is called Smoothed Dissipative Particle Dynamics (SDPD), which simulate situations of micro-fluids in the mesoscopic flow scale. Furthermore, we implemented a surface-tension formulation for the Continuum Surface Force (CSF) method in bi-phase, commonly used for capillarity modelling applications in micro-device and micro-liquids. The validation of the simulator has been performed with the cases in Poiseuille Flow, Couette Flow, one single droplet impacting on a liquid film and bi-phase flows in microfluidic devices.

Downloads

Não há dados estatísticos.

Referências

Adami, S., Hu, X., and Adams, N. (2010). A new surface-tension formulation for multi-phase

SPH using a reproducing divergence approximation. J. Comput. Phys., 229(13):5011”“5021.

Adami, S., Hu, X., and Adams, N. (2012). A generalized wall boundary condition for smoothed

particle hydrodynamics. J. Comput. Phys., 231(21):7057”“7075.

Anderson, J. a., Lorenz, C. D., and Travesset, A. (2008). General purpose molecular dynamics

simulations fully implemented on graphics processing units. J. Comput. Phys., 227(10):5342”“

Cheng, J., Kricka, L., Sheldon, E., andWilding, P. (1998). Sample preparation in microstructured

devices. Microsyst. Technol. Chem. Life Sci., 194.

Crespo, A. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M., and Rogers, B. D. (2011).

GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle

hydrodynamics methods. PLoS One, 6(6):e20685.

Ellero, M. and Tanner, R. (2005). SPH simulations of transient viscoelastic flows at low Reynolds

number. J. Nonnewton. Fluid Mech., 132(1-3):61”“72.

Espanol, P. (2002). Dissipative particle dynamics revisted. SIMU ’Challenges Mol. simulations’

Newsl., (4).

Español, P. and Revenga, M. (2003). Smoothed dissipative particle dynamics. Phys. Rev. E,

(2):1”“12.

Español, P., Serrano, M., and Zuñiga, I. (1997). Coarse-graining of a fluid and its relation with

dissipative particle dynamics and smoothed particle dynamic. Int. J. Mod. . . . , 8(4):899”“908.

Filipovic, N., Ivanovic, M., and Kojic, M. (2008). A comparative numerical study between

dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple

unsteady flows in microfluidics. Microfluid. Nanofluidics, 7(2):227”“235.

Flekkoy, E., Coveney, P. V. P., De Fabritiis G, Flekko, E. G., and Fabritiis, G. D. (2000).

Foundations of dissipative particle dynamics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat.

Interdiscip. Topics, 62(2 Pt A):2140”“57.

Gingold, R. and Monaghan, J. (1982). Kernel estimates as a basis for general particle methods

in hydrodynamics. J. Comput. Phys., 46(3):429”“453.

Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. a., and Crespo, A. J. (2010). State-of-the-art

of classical SPH for free-surface flows. J. Hydraul. Res., 48(sup1):6”“27.

Gray, J. and Monaghan, J. (2003). Caldera collapse and the generation of waves. Geochemistry

Geophys. Geosystems.

Grmela, M. and Öttinger, H. H. (1997). Dynamics and thermodynamics of complex fluids. I.

Development of a general formalism. Phys. Rev. E, 56(6):6620”“6632.

Hoogerbrugge, P., Koelman, J., Search, H., Journals, C., Contact, A., Iopscience, M., and

Address, I. P. (2007). Simulating microscopic hydrodynamic phenomena with dissipative

particle dynamics. EPL (Europhysics Lett., 155.

Hu, X. X. Y. and Adams, N. a. (2006). A multi-phase SPH method for macroscopic and

mesoscopic flows. J. Comput. Phys., 213(2):844”“861.

Jiang, T., Ouyang, J., Li, X., Ren, J., and Wang, X. (2013). Numerical study of a single drop

impact onto a liquid film up to the consequent formation of a crown. J. Appl. Mech. Tech.

Phys., 54(5):720”“728.

Li, J., Ge, W., Wang, W., Yang, N., Liu, X., Wang, L., He, X., Wang, X., Wang, J., and Kwauk,

M. (2013). From Multiscale Modeling to Meso-Science. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Litvinov, S., Ellero, M., Hu, X., and Adams, N. (2010). A splitting scheme for highly dissipative

smoothed particle dynamics. J. Comput. Phys., 229(15):5457”“5464.

Liu, M., Meakin, P., and Huang, H. (2007). Dissipative particle dynamics simulation of multiphase

fluid flow in microchannels and microchannel networks. Phys. Fluids, 19(3):033302.

Liu, M. B. and Liu, G. R. (2004). Meshfree particle simulation of micro channel flows with

surface tension. Comput. Mech., 35(5):332”“341.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J.,

:1013.

Monaghan, J. (1992). Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys.,

(1):543”“574.

Monaghan, J. (2012). Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu.

Rev. Fluid Mech., 44(1):323”“346.

Morris, J. P. (2000). Simulating surface tension with smoothed particle hydrodynamics. Int. J.

Numer. Methods Fluids, 33(3):333”“353.

Morris, J. P., Fox, P. J., and Zhu, Y. (1997). Modeling Low Reynolds Number Incompressible

Flows Using SPH. J. Comput. Phys., 136(1):214”“226.

Nair, P. and Tomar, G. (2014). An improved free surface modeling for incompressible SPH.

Comput. Fluids, 102:304”“314.

Nisar, A., Afzulpurkar, N., Mahaisavariya, B., and Tuantranont, A. (2008). MEMS-based

micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem.,

(2):917”“942.

Nugent, S. and Posch, H. (2000). Liquid drops and surface tension with smoothed particle

applied mechanics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 62(4

Pt A):4968”“75.

Ottinger, H. and Grmela, M. (1997). Dynamics and thermodynamics of complex fluids. II.

Illustrations of a general formalism. Phys. Rev. E, 56(6):6620”“6632.

Quesada, A. V. (2010). Micro-reología computacional. PhD thesis, National Distance Education

University.

Sigalotti, L. D. G., Klapp, J., Sira, E., Meleán, Y., and Hasmy, A. (2003). SPH simulations of

time-dependent Poiseuille flow at low Reynolds numbers. J. Comput. Phys., 191(2):622”“638.

Sigalotti, L. D. G. and López, H. (2008). Adaptive kernel estimation and SPH tensile instability.

Comput. Math. with Appl., 55(1):23”“50.

Sukop, M. and Thorne, D. (2006). Lattice Boltzmann Modeling, volume 79. Springer.

Tong, M. and Browne, D. J. (2014). An incompressible multi-phase smoothed particle hydrodynamics

(SPH) method for modelling thermocapillary flow. Int. J. Heat Mass Transf.,

:284”“292.

Tripp, G. I. and Vearncombe, J. R. (2004). Fault/fracture density and mineralization: A contouring

method for targeting in gold exploration. J. Struct. Geol., 26(6-7):1087”“1108.

Vázquez-Quesada, A., Ellero, M., and Español, P. (2009). Consistent scaling of thermal

fluctuations in smoothed dissipative particle dynamics. J. Chem. Phys., 130(3):034901.

Vázquez-Quesada, A., Ellero, M., and Español, P. (2012). A SPH-based particle model for

computational microrheology. Microfluid. Nanofluidics, 13(2):249”“260.

Violeau, D. (2012). Fluid Mechanics and the SPH method: theory and applications, volume

OXFORD UNIVERSITY PRESS, Oxford.

Xu, X., Ouyang, J., Jiang, T., and Li, Q. (2014). Numerical analysis of the impact of two droplets

with a liquid film using an incompressible SPH method. J. Eng. Math., 85(1):35”“53.

Downloads

Publicado

2017-02-08

Como Citar

Patino-Narino, E. A., Idagawa, H. S., & Ferreira, L. O. S. (2017). IMPLEMENTATION OF GENERIC METHODOLOGY WITH SDPD IN PROBLEMS FOR MICROFLUIDIC DEVICES. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(21), 57–75. https://doi.org/10.26512/ripe.v2i21.21698