• Edgar Andres Patino-Narino UNICAMP
  • Hugo Sakai Idagawa UNICAMP
  • Luiz Otavio Saraiva Ferreira UNICAMP



Meshless. Microfluidic devices. Smoothed Dissipative Particle Dynamics.


This paper proposes the formulation and application of classical hydrodynamics problem using GENERIC methodology in a solution based on the SPH. This meshless particle solution is called Smoothed Dissipative Particle Dynamics (SDPD), which simulate situations of micro-fluids in the mesoscopic flow scale. Furthermore, we implemented a surface-tension formulation for the Continuum Surface Force (CSF) method in bi-phase, commonly used for capillarity modelling applications in micro-device and micro-liquids. The validation of the simulator has been performed with the cases in Poiseuille Flow, Couette Flow, one single droplet impacting on a liquid film and bi-phase flows in microfluidic devices.


Não há dados estatísticos.


Adami, S., Hu, X., and Adams, N. (2010). A new surface-tension formulation for multi-phase

SPH using a reproducing divergence approximation. J. Comput. Phys., 229(13):5011”“5021.

Adami, S., Hu, X., and Adams, N. (2012). A generalized wall boundary condition for smoothed

particle hydrodynamics. J. Comput. Phys., 231(21):7057”“7075.

Anderson, J. a., Lorenz, C. D., and Travesset, A. (2008). General purpose molecular dynamics

simulations fully implemented on graphics processing units. J. Comput. Phys., 227(10):5342”“

Cheng, J., Kricka, L., Sheldon, E., andWilding, P. (1998). Sample preparation in microstructured

devices. Microsyst. Technol. Chem. Life Sci., 194.

Crespo, A. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M., and Rogers, B. D. (2011).

GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle

hydrodynamics methods. PLoS One, 6(6):e20685.

Ellero, M. and Tanner, R. (2005). SPH simulations of transient viscoelastic flows at low Reynolds

number. J. Nonnewton. Fluid Mech., 132(1-3):61”“72.

Espanol, P. (2002). Dissipative particle dynamics revisted. SIMU ’Challenges Mol. simulations’

Newsl., (4).

Español, P. and Revenga, M. (2003). Smoothed dissipative particle dynamics. Phys. Rev. E,


Español, P., Serrano, M., and Zuñiga, I. (1997). Coarse-graining of a fluid and its relation with

dissipative particle dynamics and smoothed particle dynamic. Int. J. Mod. . . . , 8(4):899”“908.

Filipovic, N., Ivanovic, M., and Kojic, M. (2008). A comparative numerical study between

dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple

unsteady flows in microfluidics. Microfluid. Nanofluidics, 7(2):227”“235.

Flekkoy, E., Coveney, P. V. P., De Fabritiis G, Flekko, E. G., and Fabritiis, G. D. (2000).

Foundations of dissipative particle dynamics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat.

Interdiscip. Topics, 62(2 Pt A):2140”“57.

Gingold, R. and Monaghan, J. (1982). Kernel estimates as a basis for general particle methods

in hydrodynamics. J. Comput. Phys., 46(3):429”“453.

Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. a., and Crespo, A. J. (2010). State-of-the-art

of classical SPH for free-surface flows. J. Hydraul. Res., 48(sup1):6”“27.

Gray, J. and Monaghan, J. (2003). Caldera collapse and the generation of waves. Geochemistry

Geophys. Geosystems.

Grmela, M. and Öttinger, H. H. (1997). Dynamics and thermodynamics of complex fluids. I.

Development of a general formalism. Phys. Rev. E, 56(6):6620”“6632.

Hoogerbrugge, P., Koelman, J., Search, H., Journals, C., Contact, A., Iopscience, M., and

Address, I. P. (2007). Simulating microscopic hydrodynamic phenomena with dissipative

particle dynamics. EPL (Europhysics Lett., 155.

Hu, X. X. Y. and Adams, N. a. (2006). A multi-phase SPH method for macroscopic and

mesoscopic flows. J. Comput. Phys., 213(2):844”“861.

Jiang, T., Ouyang, J., Li, X., Ren, J., and Wang, X. (2013). Numerical study of a single drop

impact onto a liquid film up to the consequent formation of a crown. J. Appl. Mech. Tech.

Phys., 54(5):720”“728.

Li, J., Ge, W., Wang, W., Yang, N., Liu, X., Wang, L., He, X., Wang, X., Wang, J., and Kwauk,

M. (2013). From Multiscale Modeling to Meso-Science. Springer Berlin Heidelberg, Berlin,


Litvinov, S., Ellero, M., Hu, X., and Adams, N. (2010). A splitting scheme for highly dissipative

smoothed particle dynamics. J. Comput. Phys., 229(15):5457”“5464.

Liu, M., Meakin, P., and Huang, H. (2007). Dissipative particle dynamics simulation of multiphase

fluid flow in microchannels and microchannel networks. Phys. Fluids, 19(3):033302.

Liu, M. B. and Liu, G. R. (2004). Meshfree particle simulation of micro channel flows with

surface tension. Comput. Mech., 35(5):332”“341.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J.,


Monaghan, J. (1992). Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys.,


Monaghan, J. (2012). Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu.

Rev. Fluid Mech., 44(1):323”“346.

Morris, J. P. (2000). Simulating surface tension with smoothed particle hydrodynamics. Int. J.

Numer. Methods Fluids, 33(3):333”“353.

Morris, J. P., Fox, P. J., and Zhu, Y. (1997). Modeling Low Reynolds Number Incompressible

Flows Using SPH. J. Comput. Phys., 136(1):214”“226.

Nair, P. and Tomar, G. (2014). An improved free surface modeling for incompressible SPH.

Comput. Fluids, 102:304”“314.

Nisar, A., Afzulpurkar, N., Mahaisavariya, B., and Tuantranont, A. (2008). MEMS-based

micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem.,


Nugent, S. and Posch, H. (2000). Liquid drops and surface tension with smoothed particle

applied mechanics. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 62(4

Pt A):4968”“75.

Ottinger, H. and Grmela, M. (1997). Dynamics and thermodynamics of complex fluids. II.

Illustrations of a general formalism. Phys. Rev. E, 56(6):6620”“6632.

Quesada, A. V. (2010). Micro-reología computacional. PhD thesis, National Distance Education


Sigalotti, L. D. G., Klapp, J., Sira, E., Meleán, Y., and Hasmy, A. (2003). SPH simulations of

time-dependent Poiseuille flow at low Reynolds numbers. J. Comput. Phys., 191(2):622”“638.

Sigalotti, L. D. G. and López, H. (2008). Adaptive kernel estimation and SPH tensile instability.

Comput. Math. with Appl., 55(1):23”“50.

Sukop, M. and Thorne, D. (2006). Lattice Boltzmann Modeling, volume 79. Springer.

Tong, M. and Browne, D. J. (2014). An incompressible multi-phase smoothed particle hydrodynamics

(SPH) method for modelling thermocapillary flow. Int. J. Heat Mass Transf.,


Tripp, G. I. and Vearncombe, J. R. (2004). Fault/fracture density and mineralization: A contouring

method for targeting in gold exploration. J. Struct. Geol., 26(6-7):1087”“1108.

Vázquez-Quesada, A., Ellero, M., and Español, P. (2009). Consistent scaling of thermal

fluctuations in smoothed dissipative particle dynamics. J. Chem. Phys., 130(3):034901.

Vázquez-Quesada, A., Ellero, M., and Español, P. (2012). A SPH-based particle model for

computational microrheology. Microfluid. Nanofluidics, 13(2):249”“260.

Violeau, D. (2012). Fluid Mechanics and the SPH method: theory and applications, volume


Xu, X., Ouyang, J., Jiang, T., and Li, Q. (2014). Numerical analysis of the impact of two droplets

with a liquid film using an incompressible SPH method. J. Eng. Math., 85(1):35”“53.




Como Citar

Patino-Narino, E. A., Idagawa, H. S., & Ferreira, L. O. S. (2017). IMPLEMENTATION OF GENERIC METHODOLOGY WITH SDPD IN PROBLEMS FOR MICROFLUIDIC DEVICES. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(21), 57–75.