Factores que influyen en la aceptación de las Tecnologías de Inteligencia Artificial en Salud
DOI:
https://doi.org/10.26512/gs.v13i01.41552Palabras clave:
Inteligencia Artificial, Aplicaciones de la Informática Médica, ; Sistemas de Apoyo a Decisiones Clínicas, Revisión SistemáticaResumen
Desde 2010, el uso de tecnologías de Inteligencia Artificial en salud y promoción de la calidad de vida ha mostrado un avance significativo en el cuidado de la salud. Sin embargo, existen muchas barreras y resistencias para su implementación, ya sea por parte de la dirección hospitalaria, de los pacientes, de los profesionales de la salud, de los colegios profesionales y de la sociedad en general. El objetivo de esta investigación es identificar los factores que influyen en la aceptación de la Inteligencia Artificial en el cuidado de la salud a través de una revisión sistemática de los estudios que evaluaron empíricamente el uso de esta tecnología. Para componer el marco literario se realizó una revisión sistemática de la literatura basada en revistas Web of Science, con una muestra final de 50 artículos. Como principales resultados se identificaron 11 factores: aspectos clínicos, aspectos humanos, aspectos organizacionales, aspectos regulatorios, experiencia del usuario, nivel de educación para el desarrollo tecnológico, nivel de educación para el uso de la tecnología, infraestructura tecnológica, implementación tecnológica, percepción de potencial y resistencia a la innovación.
Descargas
Citas
Abedi, V., Khan, A., Chaudhary, D., Misra, D., Avula, V., Mathrawala, D., Kraus, C., Marshall, K. A., Chaudhary, N., Li, X., Schirmer, C. M., Scalzo, F., Li, J. & Zand, R. (2020). Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework [PMID: 32922515]. Therapeutic Advances in Neurological Disorders, 13, 1756286420938962. https://doi.org/10.1177/1756286420938962
Ahmadi, M., Mehrabi, N., Sheikhtaheri, A. & Sadeghi, M. (2017). Acceptability of picture archiving and communication system (PACS) among hospital healthcare personnel based on a unified theory of acceptance and use of technology. Electronic Physician, 9(9), 5325–5330. https: //doi.org/10.19082/5325.
Andersson, J., Nyholm, T., Ceberg, C., Almén, A., Bernhardt, P., Fransson, A. & Olsson, L. E. (2021).
Artificial intelligence and the medical physics profession - A Swedish perspective. Physica
Medica, 88, 218–225. https://doi.org/https://doi.org/10.1016/j.ejmp.2021.07.009
Azimova, N. D., Ashirbaev, S. P. & Vikhrov, I. P. (2020). THE FIRST STEPS IN ARTIFICIAL
INTELLIGENCE DEVELOPMENT IN MEDICINE IN UZBEKISTAN. Health Problems of
Civilization, 14(4), 314–319. https://doi.org/10.5114/hpc.2020.98086
Bergier, H., Duron, L., Sordet, C., Kawka, L., Schlencker, A., Chasset, F. & Arnaud, L. (2021). Digital
health, big data and smart technologies for the care of patients with systemic autoimmune
diseases: Where do we stand? Autoimmunity Reviews, 20(8), 102864.
https://doi.org/10.1016/j. autrev.2021.102864
Berre, C., Sandborn, W., Aridhi, S., Devignes, M.-D., Fournier, L., Smail, M., Danese, S. & PeyrinBiroulet, L. (2019). Application of Artificial Intelligence to Gastroenterology and Hepatology.
Gastroenterology, 158. https://doi.org/10.1053/j.gastro.2019.08.058
Beyar, R., Davies, J. E., Cook, C., Dudek, D., Cummins, P. A. & Bruining, N. (2021). Robotics,
imaging, and artificial intelligence in the catheterisation laboratory. EuroIntervention, 17,
–549. https://doi.org/10.4244/EIJ-D-21-00145
Boon-itt, S. (2019). Quality of health websites and their influence on perceived usefulness, trust and
intention to use: an analysis from Thailand. Journal of Innovation and Entrepreneurship, 8(1).
https://doi.org/10.1186/s13731-018-0100-9
Briganti, G. & Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers
in Medicine, 7, 27. https://doi.org/10.3389/fmed.2020.00027
Brito, J. V. d. C. S. & Ramos, A. S. M. (2019). Limitações dos Modelos de Aceitação da Tecnologia: um
Ensaio sob uma Perspectiva Crítica. Edição Especial: VIII Simpósio Brasileiro de Tecnologia
da Informação, 17(EE), 210–220. https://doi.org/10.21714/1679-18272019v17esp.p210-220
Cao, H., Zhang, Z., Evans, R. D., Dai, W., Bi, Q., Zhu, Z., Xu, J. & Shen, L. (2021). Barriers and
Enablers to the Implementation of Intelligent Guidance Systems for Patients in Chinese Tertiary
Transfer Hospitals: Usability Evaluation. IEEE Transactions on Engineering Management,
–10. https://doi.org/10.1109/TEM.2021.3066564
Chen, C.-Y., Lin, W.-C. & Yang, h.-y. (2020). Diagnosis of ventilator-associated pneumonia using
electronic nose sensor array signals: solutions to improve the application of machine learning
in respiratory research. Respiratory Research, 21. https://doi.org/10.1186/s12931-020-1285-6.
Cheng, J., Abel, J., Balis, U., McClintock, D. & Pantanowitz, L. (2020). Challenges in the Development,
Deployment Regulation of Artificial Intelligence (AI) in Anatomical Pathology. The American
Journal of Pathology, 191. https://doi.org/10.1016/j.ajpath.2020.10.018
Davenport, T. & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future
Hospital Journal, 6, 94–98.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information
Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Diprose, W. K., Buist, N. S., Hua, N., Thurier, Q., Shand, G. & Robinson, R. (2020). Physician
understanding, explainability, and trust in a hypothetical machine learning risk calculator.
Journal of the American Medical Informatics Association: JAMIA.
Esmaeilzadeh, P., Mirzaei, T. & Dharanikota, S. (2021). Patients’ Perceptions Toward Human–Artificial
Intelligence Interaction in Health Care: Experimental Study. Journal of Medical Internet
Research, 23, e25856. https://doi.org/10.2196/25856
Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A. & Belgamo, A. (2016). Improvements in the StArt tool to better support the systematic review process. Proceedings of
the 20th International Conference on Evaluation and Assessment in Software Engineering.
https://doi.org/10.1145/2915970.2916013
Field, M., Vinod, S., Aherne, N., Carolan, M., Dekker, A., Delaney, G., Greenham, S., Hau, E.,
Lehmann, J., Ludbrook, J., Miller, A., Rezo, A., Selvaraj, J., Sykes, J., Holloway, L. & Thwaites,
D. (2021). Implementation of the Australian Computer-Assisted Theragnostics (AusCAT)
network for radiation oncology data extraction, reporting and distributed learning. Journal of
Medical Imaging and Radiation Oncology, 65. https://doi.org/10.1111/1754-9485.13287
Foreman, B. (2020). Neurocritical Care: Bench to Bedside (Eds. Claude Hemphill, Michael James)
Integrating and Using Big Data in Neurocritical Care. Neurotherapeutics, 17. https://doi.org/10.
/s13311-020-00846-1
Gomolin, A., Netchiporouk, E., Gniadecki, R. & Litvinov, I. (2020). Artificial Intelligence Applications
in Dermatology: Where Do We Stand? Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.
00100
Gopal, G., Suter-Crazzolara, C., Toldo, L. & Eberhardt, W. (2018). Digital transformation in healthcare - Architectures of present and future information technologies. Clinical Chemistry and
Laboratory Medicine (CCLM), 57. https://doi.org/10.1515/cclm-2018-0658
Gu, D., Zhao, W., Xie, Y., Wang, X., Su, K. & Zolotarev, O. V. (2021). A Personalized Medical Decision
Support System Based on Explainable Machine Learning Algorithms and ECC Features: Data
from the Real World. Diagnostics, 11(9). https://doi.org/10.3390/diagnostics11091677
Gubatan, J., Levitte, S., Patel, A., Balabanis, T., Wei, M. & Sinha, S. (2021). Artificial intelligence
applications in inflammatory bowel disease: Emerging technologies and future directions.
World journal of gastroenterology, 27, 1920–1935. https://doi.org/10.3748/wjg.v27.i17.1920
Holden, R. J. & Karsh, B. (2010). The Technology Acceptance Model: Its past and its future in health
care. Journal of Biomedical Informatics, 43(1), 159–172. https://doi.org/10.1016/j.jbi.2009.07.
Hu, Y., Jacob, J., Parker, G., Hawkes, D., Hurst, J. & Stoyanov, D. (2020). The challenges of deploying
artificial intelligence models in a rapidly evolving pandemic.
Hughes, K., Zhou, J., Bao, Y., Singh, P., Wang, J. & Yin, K. (2019). Natural language processing to
facilitate breast cancer research and management. The Breast Journal, 26. https://doi.org/10.
/tbj.13718
Juravle, G., Boudouraki, A., Terziyska, M. & Rezlescu, C. (2020). Chapter 14 - Trust in artificial
intelligence for medical diagnoses (B. L. Parkin, Ed.; Vol. 253). Elsevier. https://doi.org/https:
//doi.org/10.1016/bs.pbr.2020.06.006 .
Jutzi, T., Krieghoff-Henning, E., Holland-Letz, T., Utikal, J., Hauschild, A., Schadendorf, D., Sondermann, W., Fröhling, S., Hekler, A., Schmitt, M., Maron, R. & Brinker, T. (2020). Artificial
Intelligence in Skin Cancer Diagnostics: The Patients’ Perspective. Frontiers in Medicine, 7.
https://doi.org/10.3389/fmed.2020.00233
Kasperbauer, T. (2020). Conflicting roles for humans in learning health systems and AI-enabled
healthcare. Journal of Evaluation in Clinical Practice, 27. https://doi.org/10.1111/jep.13510
Kealey, E., Leckman-Westin, E. & Finnerty, M. T. (2013). Impact of four training conditions on physician use of a web-based clinical decision support system. Artificial intelligence in medicine,
(1), 39–44. https://doi.org/https://doi.org/10.1016/j.artmed.2013.03.003
Ketikidis, P., Dimitrovski, T., Lazuras, L. & Bath, P. A. (2012). Acceptance of health information
technology in health professionals: An application of the revised technology acceptance model.
Health Informatics Journal, 18(2), 124–134. https://doi.org/10.1177/1460458211435425
Klumpp, M., Hintze, M., Immonen, M., Ródenas-Rigla, F., Pilati, F., Aparicio-Martínez, F., Çelebi, D.,
Liebig, T., Jirstrand, M., Urbann, O., Hedman, M., Lipponen, J. A., Bicciato, S., Radan, A.-P.,
Valdivieso, B., Thronicke, W., Gunopulos, D. & Delgado-Gonzalo, R. (2021). Artificial Intelligence for Hospital Health Care: Application Cases and Answers to Challenges in European
Hospitals. Healthcare, 9(8). https://doi.org/10.3390/healthcare9080961
Lai, P. (2017). The Literature Review of Technology Adoption models and theories for the novelty
technology. Journal of Information Systems and Technology Management, 14(1). https://doi.
org/10.4301/s1807-17752017000100002
Lennartz, S., Dratsch, T., Zopfs, D., Persigehl, T., Maintz, D., Große Hokamp, N. & Pinto dos Santos,
D. (2021). Use and Control of Artificial Intelligence in Patients Across the Medical Workflow:
Single-Center Questionnaire Study of Patient Perspectives. J Med Internet Res, 23(2), e24221.
Loncaric, F., Camara, O., Piella, G. & Bijnens, B. (2020). Integration of artificial intelligence into
clinical patient management: focus on cardiac imaging. Revista Española de Cardiología
(English Edition), 74. https://doi.org/10.1016/j.rec.2020.07.003
McParland, A. & Grant, K. (2019). Applications of artificial intelligence in emergency medicine.
University of Toronto medical journal, 96.
Mendelson, E. B. (2019). Artificial Intelligence in Breast Imaging: Potentials and Limitations. American Journal of Roentgenology, 212(2), 293–299. https://doi.org/10.2214/AJR.18.20532
Mohammadzadeh, N., Safdari, R. & Rahimi, A. (2013). Multi-Agent Systems: Effective Approach for
Cancer Care Information Management. Asian Pacific journal of cancer prevention : APJCP,
, 7757–9. https://doi.org/10.7314/APJCP.2013.14.12.7757
Mysona, D., Kapp, D., Rohatgi, A., Lee, D., Mann, A., Tran, P., Tran, L., She, J. & Chan, J. (2021).
Applying artificial intelligence to gynecologic oncology: A review [Funding Information: Dr
Chan discloses that he is a recipient of grant/research funding from Acerta, Aravive, Biodesix,
Clovis, Johnson Johnson, Oxigen, Genentech, Tesaro, AstraZeneca, Eisai, and Merck. This
project was supported by Denise Hale Chair and Fisher Family Fund from Dr John Chan. The
remaining authors, faculty, and staff in a position to control the content of this CME activity
have disclosed that they have no financial relationships with, or financial interests in, any
commercial organizations relevant to this educational activity. Publisher Copyright: © 2021
Lippincott Williams and Wilkins. All rights reserved.]. Obstetrical and Gynecological Survey,
(5), 292–301. https://doi.org/10.1097/ogx.0000000000000902
Nadarzynski, T., Miles, O., Cowie, A. & Ridge, D. (2019). Acceptability of artificial intelligence
(AI)-led chatbot services in healthcare: A mixed-methods study. DIGITAL HEALTH, 5,
https://doi.org/10.1177/2055207619871808
Nizam, V. & Aslekar, A. (2021). Challenges of Applying AI in Healthcare in India. Journal of
Pharmaceutical Research International, 33(36B), 203–209. https://doi.org/10.9734/jpri/2021/
v33i36B31969.
Padmanabhan, M., Yuan, P., Chada, G. & Nguyen, H. V. (2019). Physician-Friendly Machine Learning:
A Case Study with Cardiovascular Disease Risk Prediction. Journal of Clinical Medicine, 8(7).
https://doi.org/10.3390/jcm8071050
Palma, E. M., Santos, T. A. & Klein, A. (2021). Fatores que influenciam a aceitação de telemedicina
por médicos no Brasil. Revista Alcance Eletrônica, 28(1), 118–138. https://doi.org/https:
//doi.org/10.14210/alcance.v28n1(jan/abr).p118-138
Passos, R. P., Vilela Junior, G. & Barros, V. (2018). INTELIGÊNCIA ARTIFICIAL NAS CIÊNCIAS
DA SAÚDE. CPAQV Journal, 10, 1. https://doi.org/10.36692/cpaqv-v10n1-1
Peixoto, M. R., Ferreira, J. B. & Oliveira, L. (2022). Drivers for Teleconsultation Acceptance in Brazil:
Patients’ Perspective during the COVID-19 Pandemic. Revista de Administração Contemporânea, 26(2).
Poon, A. & Sung, J. (2021). Opening the black box of AI-Medicine. Journal of Gastroenterology and
Hepatology, 36, 581–584. https://doi.org/10.1111/jgh.15384
Prakash, A. V. & Das, S. (2021). Medical practitioner’s adoption of intelligent clinical diagnostic
decision support systems: A mixed-methods study. Information Management, 58(7), 103524.
https://doi.org/https://doi.org/10.1016/j.im.2021.103524
Rahimi, B., Nadri, H., Afshar, H. L. & Timpka, T. (2018). A Systematic Review of the Technology
Acceptance Model in Health Informatics. Applied Clinical Informatics, 09(03), 604–634.
https://doi.org/10.1055/s-0038-1668091
Scherer, R., Siddiq, F. & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic
structural equation modeling approach to explaining teachers’ adoption of digital technology
in education. Computers & Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.
Schwartz III, J., Gao, M., Geng, E., Mody, K., Mikhail, C. & Cho, S. (2019). Applications of Machine
Learning Using Electronic Medical Records in Spine Surgery. Neurospine, 16, 643–653.
https://doi.org/10.14245/ns.1938386.193
Shinners, L., Aggar, C., Grace, S. & Smith, S. (2019). Exploring healthcare professionals’ understanding and experiences of artificial intelligence technology use in the delivery of healthcare: An
integrative review. Health Informatics Journal, 26, 146045821987464. https://doi.org/10.1177/
Spänig, S., Emberger-Klein, A., Sowa, J.-P., Canbay, A., Menrad, K. & Heider, D. (2019). The
Virtual Doctor: An Interactive Clinical-Decision-Support System based on Deep Learning
for Non-Invasive Prediction of Diabetes. Artificial Intelligence in Medicine, 100, 101706.
https://doi.org/10.1016/j.artmed.2019.101706
Tarakji, K., Silva, J., Chen, L., Turakhia, M., Perez, M., Attia, Z., Passman, R., Boissy, A., Cho, D.,
Majmudar, M., Mehta, N., Wan, E. & Chung, M. (2020). Digital Health and the Care of the
Arrhythmia Patient; What Every Electrophysiologist Needs to Know. Circulation. Arrhythmia
and electrophysiology, 13. https://doi.org/10.1161/CIRCEP.120.007953
The Lancet Digital Health. (2021). Artificial intelligence for COVID-19: saviour or saboteur? The
Lancet Digital Health, 3(1), e1. https://doi.org/10.1016/s2589-7500(20)30295-8
Ting, D., Pasquale, L., Peng, L., Campbell, J., Lee, A., Raman, R., Tan, G., Schmetterer, L., Keane,
P. & Wong, T. Y. (2018). Artificial intelligence and deep learning in ophthalmology. British
Journal of Ophthalmology, 103, bjophthalmol–2018. https://doi.org/10.1136/bjophthalmol2018-313173
Torous, J., Bucci, S., Bell, I., Kessing, L., Faurholt-Jepsen, M., Whelan, P., Carvalho, A., Keshavan, M.
& Firth, J. (2021). The growing field of digital psychiatry: current evidence and the future of
apps, social media, chatbots, and virtual reality. World Psychiatry, 20. https://doi.org/10.1002/
wps.20883.
Tran, A. Q., Nguyen, L. H., Nguyen, H. S. A., Nguyen, C. T., Vu, L. G., Zhang, M., Vu, T. M. T.,
Nguyen, S. H., Tran, B. X., Latkin, C. A., Ho, R. C. M. & Ho, C. S. H. (2021). Determinants of
Intention to Use Artificial Intelligence-Based Diagnosis Support System Among Prospective
Physicians. Frontiers in Public Health, 9, 1752. https://doi.org/10.3389/fpubh.2021.755644
Tziortziotis, I., Laskaratos, F.-M. & Coda, S. (2021). Role of Artificial Intelligence in Video Capsule
Endoscopy. Diagnostics, 11. https://doi.org/10.3390/diagnostics11071192
Venugopal, P., Priya, S. A., Manupati, V. K., Varela, M. L. R., Machado, J. & Putnik, G. D. (2018).
Impact of UTAUT Predictors on the Intention and Usage of Electronic Health Records and
Telemedicine from the Perspective of Clinical Staffs. Innovation, Engineering and Entrepreneurship (pp. 172–177). Springer International Publishing. https://doi.org/10.1007/978-3-319-
-6_24
Vourgidis, I., Mafuma, S. J., Wilson, P., Carter, J. & Cosma, G. (2019). Medical Expert Systems –
A Study of Trust and Acceptance by Healthcare Stakeholders. Em A. Lotfi, H. Bouchachia,
A. Gegov, C. Langensiepen & M. McGinnity (Ed.), Advances in Computational Intelligence
Systems (pp. 108–119). Springer International Publishing.
World Health Organization. (2021). Ethics and governance of artificial intelligence for health. https:
//www.who.int/publications/i/item/9789240029200 {ISBN} 9789240029200
Xu, J., Yang, P., Xue, S., Sharma, B., Sanchez-Martin, M., Wang, F., Beaty, K., Dehan, E. & Parikh,
B. (2019). Translating cancer genomics into precision medicine with artificial intelligence:
applications, challenges and future perspectives. Human Genetics, 138, 1–16. https://doi.org/
1007/s00439-019-01970-5
Yamada, K. & Mori, S. (2019). The day when computers read between lines. Japanese journal of
radiology, 37, 3. https://doi.org/10.1007/s11604-019-00833-3
Yang, Y. J. & Bang, C. S. (2019). Application of artificial intelligence in gastroenterology. World
journal of gastroenterology, 25(14), 1666–1683. https://doi.org/https://doi.org/10.3748/wjg.
v25.i14.1666
Ye, T., Xue, J., He, M., Gu, J., Lin, H., Xu, B. & Cheng, Y. (2019). Psychosocial Factors Affecting
Artificial Intelligence Adoption in Health Care in China: Cross-Sectional Study. J Med Internet
Res, 21(10), e14316. https://doi.org/10.2196/14316
Zhai, H., Yang, X., Xue, J., Lavender, C., Ye, T., Li, J.-B., Xu, L., Lin, L., Cao, W. & Sun, Y. (2021).
Radiation Oncologists’ Perceptions of Adopting an Artificial Intelligence–Assisted Contouring
Technology: Model Development and Questionnaire Study. J Med Internet Res, 23(9), e27122.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Gestão & Saúde
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na Revista Gestão & Saúde editada pela Universidade de Brasília, o mesmo jamais será submetido por mim ou por qualquer um dos demais coautores a qualquer outro meio de divulgação científica.
Através deste instrumento, em meu nome e em nome dos demais coautores, porventura existentes, cedo os direitos autorais do referido artigo à Revista Gestão & Saúde e declaro estar ciente de que a não observância deste compromisso submeterá o infrator a sanções e penas previstas na Lei de Proteção de Direitos Autorias (Nº9609, de 19/02/98).