BLACK HOLES AND ITS MANY SIDES

Authors

  • Lucca Lopes Dias Santos Universidade de Brasília
  • Vanessa Carvalho de Andrade Instituto de Física, Universidade de Brasília

Keywords:

General Relativity. Schwarzschild black holes. Kerr black holes. Alternative theories. Teleparallel gravity.

Abstract

In the context of the Teleparallel Equivalent of General Relativity (an alternative theory able to describe gravity) we have obtained, through the review of subjects in the literature, the field equations for some black hole models in a classical perspective. We first compare Einstein’s Relativity, wich uses differential geometry to describe the space-time, and its teleparallel equivalent, wich molds gravitation as a Gauge Theory. We then discuss the Schwarzschild and Kerr solutions for the field equations (and its physical interpretations) and obtain the mathematical tools required for building up its teleparallel equivalent (such as tetrads, connections and the torsion tensor). We conclude how these distinct ways of formulating Relativity are equivalent, mathematically consistent and provides, each one on its own way, different intepretations for the space-time behavior, while we make the didatic transposition of the subjects in the papers or books consulted. The black holes many faces are then shown as it is possible to describe then through different formalisms.

Downloads

Download data is not yet available.

References

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T.; ABERNATHY, M.; ACERNESE, F.; ACKLEY, K.; ADAMS, C.; ADAMS, T.; ADDESSO, P.; ADHIKARI, R. et al. Observation of gravitational waves from a binary black hole merger. Physical review letters, APS, v. 116, n. 6, p. 061102,

3

ALDROVANDI, R.; PEREIRA, J. G. Teleparallel Gravity: An Introduction. Dordrecht: Springer Science & Business Media, 2012. v. 173. 2, 4, 7, 8, 10, 19

ALDROVANDI, R.; PEREIRA, J. G. An Introduction to Geometrical Physics. 2. ed. New Jersey: World scientific, 2016. 2

ANDRADE, V. D.; GUILLEN, L.; PEREIRA, J. Teleparallel Equivalent of the Kaluza-Klein Theory. 2000. Disponível em: <https://arxiv.org/abs/gr-qc/9909004>. Acesso em: 09/12/2021. 21

ANDRADE, V. D.; GUILLEN, L.; PEREIRA, J. Teleparallel Gravity: An Overview. 2000. Disponível em: <https://arxiv.org/abs/gr-qc/0011087>. Acesso em: 09/12/2021. 2

ANDRADE, V. D.; PEREIRA, J. Gravitational Lorentz Force and the Description of the Gravitational Interaction. 1997. Disponível em: <https://arxiv.org/abs/gr-qc/9703059>. Acesso em: 09/12/2021. 8, 9, 10

ANDRADE, V. D.; PEREIRA, J. Riemannian and Teleparallel Descriptions of the Scalar Field Gravitational Interaction. 1997. Disponível em: <https://arxiv.org/abs/gr-qc/9706070>. Acesso em: 09/12/2021. 8

CAI, Y.-F.; CAPOZZIELLO, S.; LAURENTIS, M. D.; SARIDAKIS, E. N. f (T) teleparallel gravity and cosmology. 2016. Disponível em: <https://arxiv.org/abs/1511.07586>. Acesso em: 10/12/2021. 2, 3, 4, 21

CANONICO, R.; PARISI, L.; VILASI, G. et al. The newman janis algorithm: A review of some results. In: INSTITUTE OF BIOPHYSICS AND BIOMEDICAL ENGINEERING, BULGARIAN ACADEMY OF . . . . Proceedings of the Twelfth International Conference on

Geometry, Integrability and Quantization. [S.l.], 2012. p. 159–169. 14

CAPOZZIELLO, S.; LAMBIASE, G. Open problems in gravitational physics. 2014. Disponível em: <https://arxiv.org/abs/1409.3370>. Acesso em: 10/12/2021. 2

CAPOZZIELLO, S.; LAURENTIS, M. D. Extended Theories of Gravity. 2011. Disponível em: <https://arxiv.org/abs/1108.6266>. Acesso em: 10/12/2021. 5

CAPOZZIELLO, S.; LAURENTIS, M. D. Extended gravity: State of the art and perspectives. In: WORLD SCIENTIFIC. THE THIRTEENTH MARCEL GROSSMANN MEETING: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and

Relativistic Field Theories. [S.l.], 2015. p. 1097–1112. 3, 22

CARROLL, S. M. An Introduction to General Relativity: Spacetime and Geometry. San Francisco: Addison Wesley, 2004. 4, 15

D’INVERNO, R. A. Introducing Einstein’s Relativity. [S.l.]: Clarendon Press, 1992. 3, 4, 10, 11, 13, 14, 15

DRAKE, S. P.; SZEKERES, P. An Explanation of the Newman-Janis Algorithm. 1998. Disponível em: <https://arxiv.org/abs/gr-qc/9807001>. Acesso em: 10/12/2021. 14

GOLDSTEIN, H.; POOLE, C.; SAFKO, J. Classical Mechanics. 3. ed. [S.l.]: Addison Wesley, 2001. 4

GRIFFITHS, D. J. Introduction to Electrodynamics. 4. ed. [S.l.]: Pearson Education, 2013. 8

HAYASHI, K.; SHIRAFUJI, T. New general relativity. Physical Review D, APS, v. 19, n. 12, p. 3524, 1979. 16

HEHL, F. W.; HEYDE, P. Von der; KERLICK, G. D.; NESTER, J. M. General relativity with spin and torsion: Foundations and prospects. Reviews of Modern Physics, APS, v. 48, n. 3, p. 393, 1976. 22

KERR, R. P. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical review letters, APS, v. 11, n. 5, p. 237, 1963. 14

LANDAU, L. D.; LIFSHITZ, E. M. The Classical Theory of Fields: Volume 2. 4. ed. [S.l.]: Butterworth-Heinemann, 1980. v. 2. 4

MISNER, C. W.; THORNE, K. S.; WHEELER, J. A. Gravitation. San Francisco: W. H. Freeman and Company, 1973. 15

NEWMAN, E. T.; JANIS, A. Note on the kerr spinning-particle metric. Journal of Mathematical Physics, American Institute of Physics, v. 6, n. 6, p. 915–917, 1965. 14

PEREIRA, J.; VARGAS, T.; ZHANG, C. Axial-vector torsion and the teleparallel kerr spacetime. Classical and Quantum Gravity, IOP Publishing, v. 18, n. 5, p. 833, 2001. 13, 16, 18, 19, 20

RUBAKOV, V. Classical Theory of Gauge Fields. New Jersey: Princeton University Press, 2002. 5, 8

SCHUTZ, B. A First Course in General Relativity. 2. ed. [S.l.]: Cambridge University Press, 2009. 2

SCHWARZSCHILD, K. Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. SPAW, p. 189–196, 1916. 11

SCHWARZSCHILD, K. On the Gravitational Field of a Mass Point according to Einstein’s Theory. 1999. Disponível em:<https://arxiv.org/abs/physics/9905030>. Acesso em: 10/12/2021.

SCHWICHTENBERG, J. Physics from Symmetry. 2. ed. [S.l.]: Springer, 2018. 5

SHANKAR, R. Principles of Quantum Mechanics. 2. ed. New York: Plenum Press, 1994. 5

SPANIOL, E. P.; ANDRADE, V. C. D. Gravitomagnetism in Teleparallel Gravity. 2009. Disponível em: <https://arxiv.org/abs/0802.2697>. Acesso em: 10/12/2021. 21

Published

2022-04-17

How to Cite

Lopes Dias Santos, L., & Carvalho de Andrade , V. (2022). BLACK HOLES AND ITS MANY SIDES. Physicae Organum, 8(1), 369–393. Retrieved from https://periodicos.unb.br/index.php/physicae/article/view/41280

Most read articles by the same author(s)