THE SENSITIVITY OF EVAPOTRANSPIRATION FOR LAND USES AND TOPOGRAPHY IN AREA OF CERRADO BIOME – BRAZIL
DOI:
https://doi.org/10.26512/2236-56562021e40281Keywords:
Remote Sensing, SAFER, GLM, hypsometric regionsAbstract
Evapotranspiration (ET) is a crucial element in the spatiotemporal dynamics of moisture, energy, and heat, and is related to climatic, pedogeomorphological, and phytophysiognomic aspects of the landscape. Therefore, estimating ET requires dynamic and integrated temporal analysis with biophysical landscape factors. The study aimed to analyze the behavior of ET through the analysis of land use and land cover and topographic in time series. The Simple Algorithm for Evapotranspiration Recovery (SAFER) model was used to obtain the variable ET in the periods of 01/21, 02/22, 05/13 and 06/30/2019 (variables). A database of explanatory covariates was constructed, including land use and land cover, satellite image data (Landsat-8) and digital elevation model (SRTM). The values of variables and covariates were extracted into a grid of points and separated for three altimetric conditions, and the linear Gaussian Models (GLM) were applied to the point data. The most explanatory spectral covariates for the ET variation were Albedo and Surface Temperature. And the covariates related to topography were Digital Elevation Model and Topographic Moisture Index. In general, the wet period presents a higher ET rate (2.06 mm d-¹). Forests generated the highest ET regardless of period (1.62 mm d-¹ to 4.03 mm d-¹). Elevated topography also influences the increase in ET in relation to the same lower altimetry classes (A2 and A3). This influence is associated with the altitude dynamics and intrinsic elements of the region, such as the marshy environment in the A3 region, where the highest ET values occurred. This work stands out from its peers for addressing the influence of landscape aspects on the knowledge of evapotranspiration variation, a vanguard theme in the scope of spatial analysis.
Downloads
References
AB’SABER, A. N. Províncias geológicas e domínios morfoclimáticos no Brasil. Geomorfologia PP - São Paulo, n. 20, p. 1–26, 1970.
ALAM, M. S.; LAMB, D. W.; RAHMAN, M. M. A refined method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient. Computers and Electronics in Agriculture, v. 147, p. 12–17, 2018.
ALENCAR-SILVA, T.; MAILLARD, P. Delimitação, caracterização e tipologia das veredas do Parque Estadual Veredas do Peruaçu. Revista Geografias, p. 24–39, 2011.
ALTHOFF, D. et al. Evapotranspiration for irrigated agriculture using orbital satellites. Bioscience Journal, v. 35, n. 3, 2019.
ANDERSON, M. C. et al. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, v. 122, p. 50–65, 2012.
ANDRADE, R. G. et al. Analysis of evapotranspiration and biomass in pastures with degradation indicatives in the Upper Tocantins River Basin, in Brazilian Savanna. Revista Ceres, v. 63, n. 6, p. 754– 760, 2016.
ARANTES, A. E.; FERREIRA, L. G.; COE, M. T. The seasonal carbon and water balances of the Cerrado environment of Brazil: Past, present, and future influences of land cover and land use. ISPRS Journal of Photogrammetry and Remote Sensing, v. 117, p. 66–78, 2016.
BEZERRA, J. M. et al. Parâmetros biofísicos obtidos por sensoriamento remoto em região semiárida do
estado do Rio Grande do Norte, Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 1, p. 73–84, 2014.
BONAN, G. B. Effects of land use on the climate of the United States. Climatic Change, v. 37, n. 3, p. 449–486, 1997.
BOSQUILIA, R. W. D. et al. Evaluation of evapotranspiration variations according to soil type using multivariate statistical analysis. Geoderma, v. 355, p. 113906, 2019.
BRITO, J. L. S. et al. MODIS estimates of pasture productivity in the Cerrado based on ground and Landsat-8 data extrapolations. Journal of Applied Remote Sensing, v. 12, n. 2, p. 26006, 2018.
CAIONI, C. et al. Droughts amplify differences between the energy balance components of Amazon forests and croplands. Remote Sensing, v. 12, n. 3, p. 525, 2020.
CASTRO TEIXEIRA, A. H. et al. Modeling large-scale biometeorological indices to monitor agricultural-growing areas: applications in the fruit circuit region, São Paulo, Brazil. International Journal of Biometeorology, p. 1–12, 2020.
CIRELLI, K. R. N.; PENTEADO-DIAS, A. M. Análise da riqueza da fauna de Braconidae (Hymenoptera, Ichneumonoidea) em remanescentes naturais da Área de Proteção Ambiental (APA) de Descalvado, SP. Revista Brasileira de Entomologia, v. 47, n. 1, p. 89–98, 2003.
COHEN, W. Response of vegetation indices to changes in three measures of leaf water stress.
Photogrammetric Engineering and Remote Sensing, v. 57, n. 2, p. 195–202, 1991.
CONRAD, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geoscientific Model Development Discussions, v. 8, n. 2, 2015.
COSTA, M. H. et al. Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophysical Research Letters, v. 34, n. 7, p. 1–4, 2007.
CRISTEA, N. C. et al. An evaluation of terrain‐based downscaling of fractional snow covered area data sets based on LiDAR‐derived snow data and orthoimagery. Water Resources Research, v. 53, n. 8, p. 6802–6820, 2017.
DIAS, L. C. C.; MOSCHINI, L. E.; TREVISAN, D. P. A Influência das Atividades Antrópicas na Paisagem da Área de Proteção Ambiental Estadual do Rio Pandeiros, MG-Brasil. Fronteiras: Journal of Social, Technological and Environmental Science, v. 6, n. 2, p. 85–105, 2017.
EITEN, G. The cerrado vegetation of Brazil. The Botanical Review, v. 38, n. 2, p. 201–341, 1972. FERREIRA, L. B. et al. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of hydrology, v. 572, p. 556–570, 2019.
FONSECA, M. B. et al. Leaf damage and functional traits along a successional gradient in Brazilian tropical dry forests. Plant ecology, v. 219, n. 4, p. 403–415, 2018.
HEMAKUMARA, H. M.; CHANDRAPALA, L.; MOENE, A. F. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agricultural water management, v. 58,
n. 2, p. 109–122, 2003.
IMMERZEEL, W. W.; DROOGERS, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of hydrology, v. 349, n. 3–4, p. 411–424, 2008.
JIANG, Z. et al. Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment, v. 112, n. 10, p. 3833–3845, 2008.
KIPTALA, J. K. et al. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water resources research, v. 49, n. 12, p. 8495– 8510, 2013.
LARSON, K. M. et al. GPS multipath and its relation to near-surface soil moisture content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 3, n. 1, p. 91– 99, 2009.
LATHUILLIÈRE, M. J. et al. Rain-fed and irrigated cropland-atmosphere water fluxes and their implications for agricultural production in Southern Amazonia. Agricultural and Forest Meteorology,
v. 256, p. 407–419, 2018.
LEI, F. et al. Global investigation of soil moisture and latent heat flux coupling strength. Water resources research, v. 54, n. 10, p. 8196–8215, 2018.
LEITE, M. E. et al. Análise do Comportamento do Saldo de Radiação Instantâneo em Áreas de Cerrado por Produtos Orbitais (Analyze of Behavior of Net Radiation Instantaneous in the Areas of Cerrado by Orbitals Products). Revista Brasileira de Geografia Física, v. 11, n. 6, p. 2067–2080, 2018a.
LEITE, M. E. et al. Geotecnologias aplicadas a estimativa da temperatura de superfície em diferentes usos e ocupações do solo na Área de Proteção Ambiental do Rio Pandeiros–Minas Gerais/Geotechnologies applied to the surface temperature estimation in different soil uses and .
Caderno de Geografia, v. 28, n. 53, p. 490–509, 2018b.
LENKA, N. K. et al. Carbon dioxide and temperature elevation effects on crop evapotranspiration and water use efficiency in soybean as affected by different nitrogen levels. Agricultural Water Management, v. 230, p. 105936, 2020.
LOPES, H. L.; SILVA, B. B.; PENHA PACHECO, A. Distribuição espacial do saldo de radiação e do fluxo de calor no solo no território de Itaparica, Nordeste do Brasil. Revista Brasileira de Cartografia,
v. 66, n. 2, 2014.
MARX, A. et al. Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results. Agricultural and Forest Meteorology, v. 148, n. 4, p. 656–667, 2008.
MELESSE, A. M. et al. Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors, v. 7, n. 12, p. 3209–3241, 2007.
MELO, P. H. A. DE et al. Composição florística de angiospermas no carste do alto São Francisco, Minas Gerais, Brasil. Rodriguésia, v. 64, n. 1, p. 29–36, 2013.
MORTENSEN, N. G.; PETERSEN, E. L. Influence of topographical input data on the accuracy of wind flow modelling in complex terrain. 1997 European Wind Energy Conference. Anais...Irish Wind Energy Association, 1998
MUSSI, R. F. et al. Sugarcane evapotranspiration estimated by safer algorithm for evapotranspiration retrieving. IRRIGA, v. 25, n. 2, p. 263–278, 2020a.
MUSSI, R. F. et al. EVAPOTRANSPIRAÇÃO DA CANA-DE-AÇÚCAR ESTIMADA PELO ALGORITMO SAFER. IRRIGA, v. 25, n. 2, p. 263–278, 2020b.
NAIK, P. A.; SHI, P.; TSAI, C.-L. Extending the Akaike information criterion to mixture regression models. Journal of the American Statistical Association, v. 102, n. 477, p. 244–254, 2007.
NEVES, A. K. et al. Combining time series features and data mining to detect land cover patterns: a case study in northern Mato Grosso state, Brazil. Revista Brasileira de Cartografia, v. 68, n. 6, p. 1– 10, 2016.
NUNES, Y. R. F. et al. Pandeiros: o pantanal mineiro. MG Biota, v. 2, n. 2, p. 4–17, 2009.
PEREIRA, O. J. R. et al. Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sensing, v. 10, n. 11, p. 1–14, 2018.
PETROSELLI, A. et al. Ecological behavior of Quercus suber and Quercus ilex inferred by topographic wetness index (TWI). Trees, v. 27, n. 5, p. 1201–1215, 2013.
PÔÇAS, I. et al. Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. International Journal of Applied Earth Observation and Geoinformation, v. 21, p. 159–172, 2013.
QIU, G. Y. et al. Effects of the “Conversion of Cropland to Forest and Grassland Program” on the water budget of the Jinghe River catchment in China. Journal of Environmental Quality, v. 40, n. 6, p. 1745–1755, 2011.
RANKINE, C. et al. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers. Environmental Research Letters, v. 12, n. 10, p. 105007, 2017.
RAOUFI, R.; BEIGHLEY, E. Estimating daily global evapotranspiration using penman–monteith equation and remotely sensed land surface temperature. Remote Sensing, v. 9, n. 11, p. 1138, 2017.
REYNOLDS, D. A. Gaussian Mixture Models. Encyclopedia of biometrics, v. 741, 2009.
ROLETT, B.; DIAMOND, J. Environmental predictors of pre-European deforestation on Pacific islands. Nature, v. 431, n. 7007, p. 443–446, 2004.
RUHOFF, A. L. et al. A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas. Remote Sensing, v. 4, n. 3, p. 703–725, 2012.
RUHOFF, A. L. et al. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, v. 58, n. 8, p. 1658–1676, 2013.
SACKS, W. J.; KUCHARIK, C. J. Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology, v. 151, n. 7, p. 882–894, 2011.
SANTOS, C. A. G. et al. Estimation of evapotranspiration for different land covers in a Brazilian semi- arid region: A case study of the Brígida River basin, Brazil. Journal of South American Earth Sciences, v. 74, p. 54–66, 2017.
SANTOS, N. B. F. DOS; FERREIRA, L. G.; FERREIRA, N. C. Análise espacial da temperatura de
superfície no cerrado: uma análise sazonal a partir de dados orbitais de resolução moderada, para o período de 2003 a 2008. Cienc. Cult., v. 63, p. 30–33, 2011.
SANTOS, G. L. et al. Anthropogenic and climatic influences in the swamp environment of the Pandeiros River basin, Minas Gerais-Brazil. Environmental Monitoring and Assessment, v. 192, n. 4, p. 1–11, 2020a.
SANTOS, J. E. O. et al. Performance of SAFER evapotranspiration using missing meteorological data.
Agricultural Water Management, v. 233, p. 106076, 2020b.
SCHERER-WARREN, M. Desmembramento de estimativas de evapotranspiração obtidas por sensoriamento remoto nas componentes de evaporação e transpiração vegetal. Rev Bras Geogr Fısica,
p. 361–373, 2012.
SENAY, G. B. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm. Algorithms, v. 1, n. 2, p. 52–68, 2008.
SILVA, C. DE O. F.; CASTRO TEIXEIRA, A. H.; MANZIONE, R. L. Agriwater: An R package for
spatial modelling of energy balance and actual evapotranspiration using satellite images and agrometeorological data. Environmental Modelling & Software, v. 120, p. 104497, 2019.
SILVA, C. DE O. F.; MANZIONE, R. L. MODELAGEM ESPACIAL DA EVAPOTRANSPIRAÇÃO EM AGROECOSSISTEMA DO SISTEMA AQUÍFERO BAURU. Águas Subterrâneas, 2018.
SILVA, L. A. P. DA et al. Estimating Water Loss in an Environmental Protection Area - Minas Gerais, Southeast Brazil. Caderno de Geografia, v. 30, n. 62, p. 1–20, 2020.
SILVA, L. C. L. et al. Pedodiversidade no estado de Minas Gerais-Brasil. Caderno de Geografia, v. 28, n. 1, p. 18–38, 2018.
SILVÉRIO, D. V et al. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environmental Research Letters, v. 10, n. 10, p. 104015, 2015.
SOUZA, C. M. P. DE et al. Multivariate Analysis and Machine Learning in Properties of Ultisols (Argissolos) of Brazilian Amazon. Revista Brasileira de Ciência do Solo, v. 42, 2018.
TEAM, R. C. R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna, Austria, 2016.
TEIXEIRA, A. H. DE C. Determining regional actual evapotranspiration of irrigated crops and natural vegetation in the São Francisco river basin (Brazil) using remote sensing and Penman-Monteith equation. Remote Sensing, v. 2, n. 5, p. 1287–1319, 2010.
UFV, C.; UFLA, F. Mapa de solos do Estado de Minas Gerais. Universidade Federal de Viçosa, p. 49, 2010.
VELDMAN, J. W. et al. Comment on “The global tree restoration potential”. Science, v. 366, n. 6463,
p. eaay7976, 2019.
VELOSO, G. A. et al. Modelling gross primary productivity in tropical savanna pasturelands for livestock intensification in Brazil. Remote Sensing Applications: Society and Environment, v. 17, p. 100288, 2020.
VELOSO, G. A.; FERREIRA, M. E.; DA SILVA, B. B. Determinação da evapotranspiração real diária em áreas irrigadas do projeto Jaíba (Minas Gerais, Brasil), mediante imagens Landsat 5-TM. Cerrados,
v. 15, n. 1, p. 53–76, 2017.
VELOSO, G. A.; SILVA, L. A. P. DA; FERREIRA, M. E. Análise Do Balanço De Radiação E Energia Em Áreas De Veredas No Norte De Minas Gerais, Bioma Cerrado. Revista Cerrados, v. 18, p. 220– 247, 2020a.
VELOSO, G. A.; SILVA, L. A. P. DA; FERREIRA, M. E. Análise do Balanço de Radiação e Energia em Áreas de Veredas no Norte de Minas Gerais, Bioma Cerrado. Revista Cerrados, v. 18, n. 1, p. 220– 247, 2020b.
VENANCIO, L. P. et al. Evapotranspiration mapping of commercial corn fields in Brazil using SAFER algorithmScientia Agricolascielo, , 2020.
WANG, W. et al. Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling. Journal of Geophysical Research: Atmospheres,
v. 118, n. 10, p. 4049–4068, 2013.
XIONG, Y. et al. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote sensing, v. 4, n. 7, p. 2033–2056, 2012.
YU, H.; JIANG, S.; LAND, K. C. Multicollinearity in hierarchical linear models. Social science research, v. 53, p. 118–136, 2015.
ZEPPETELLO, L. V. et al. Large scale tropical deforestation drives extreme warming. Environmental Research Letters, 2020.
ZHANG, Y.; ODEH, I. O. A.; HAN, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, v. 11, n. 4, p. 256–264, 2009.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.