THE STUDY OF THE INFLUENCE OF BOUNDARY CONDITIONS AND HETEROGENEITY IN THE PERFORMANCE OF THE NUMERICAL UPSCALING METHOD FOR ABSOLUTE PERMEABILITY
DOI:
https://doi.org/10.26512/ripe.v2i21.21696Palavras-chave:
Upscaling techniques. Absolute Permeability. Single-Phase Flow. Reservoir Simulation. Finite-Difference Method.Resumo
In a previous worka numerical upscaling technique for absolute permeability was developed. This method is a non-local technique that uses a cell layer around the upscaling zone to reduce boundary conditions influence. Upscaling zone is the set of cells of interest for upscaling, and the cell layers (or rings) are the adjascent cells in the fine grid. The following is an extension of the method and it studies the use of more than one ring around the upscaling zone and the effect of high heterogeneity areas in upscaling. Intuition says that a greater number of rings should improve the results, since it leads to reducing boundary conditions effect. However, the use of more layers implies in a higher complexity in the upscaling algorithm. In current study, the use of 1 and 2 rings to upscale a permeability grid was considered. Computational time and percentual error were compared for performance analysis. In addition, the method was compared to the harmonic and arithmetic average techniques. Flow simulations were performed usingfinite-differencemethod and incompressible single-phase flow based. The method was applied to SPE’s dataset 1 and some permeability fields generated by numerical probability distribution.
Downloads
Referências
Chen, Z., 2007. Reservoir Simulation: Mathematical Techniques in Oil Recovery, Society for
Industrial and Applied Mathematics, Conference Series in Applied Mathematics.
Failla, A., 2015. A Numerical Upscaling Technique for Absolute Permeability and Single-Phase
Flow Based on the Finite-Difference Method, PhD Thesis, Politecnico di Milano
Christie, M. A., 1996. Upscaling for Reservoir Simulation. SPE, BP Exploration.
Fitts, C. R., 2002. Laminar and Turbulent Flow, Groundwater Science, London, Academic
press., Elsevier Science LTD, pp. 46-49.
Odster, L. V., 2013. Numerical Aspects of Flow Based Local Upscaling. Norwegian University
of Science and Technology, Trondheim.
Renard, P., Marsily, G., 2000. Calculating equivalent permeability: A Review, Water Resour.
Res., vol. 20, pp. 261-262.
Society of Petroleum Engineers- SPE Comparative Solution Project. http://www.spe.org/csp,
, also https://www.onepetro.org/journal-paper/SPE-72469-PA.
Wen, X.H., Gmez-Hernndez, J.J., 1996. Upscaling hydraulic conductivities in heterogeneous
media: An overview, Journal Hydrology, vol. 183, n 1-2, pp.ix-xxxii.
White, C. D., Horne, R. N., 1987. Compting Absolute Transmissibility in the Presence of
Fine-Scale Heterogeneity, Society of Petroleum Engineering Journal, Ninth SPE Symposium
on Reservoir Simulation, Society of Petroleum Engineers, pp. 209-220.
CILAMCE
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.