COMPRESSED AIR ENGINE WITH ACTIVE CONTROL UNDER PRESSURE SATURATION IN THE CONTROL OF OSCILLATING ROTATION

Autores

  • Alexandre de Castro Alves UNESP
  • Angelo Marcelo Tusset UTFPR
  • Jose Manoel Balthazar ITA
  • Rodrigo Tumolin Rocha UNESP
  • Frederic Conrad Janzen UTFPR

DOI:

https://doi.org/10.26512/ripe.v2i13.21633

Palavras-chave:

Input saturation. Nonlinear system. Nonlinear dynamics. Connecting-rod-crank.

Resumo

This work evaluates the oscillating rotation of a connecting-rod-crank mechanism as compressed air engine with input saturation control. The mechanism positions are controlled with a non-conservative excitement by air pressure that controls the positions of the angular output. It is evaluated the control of the angular position through the command by pneumatic valve controlled by the method of control. Initially applies control without restricting the maximum pressure that achieves saturation pressure in response to the control function. Therefore, must be limited maximum pressure in the input at 1MPa for the application and control in industrial pneumatic equipment. Thus, it is analyzes the parametric error for the angular position relative to the desired control, with and without saturation function. However, when applying the saturation control function checks that the system becomes stable despite the parametric error increase at one decimal place of 10-3 to 10-2. Therefore, the parametric errors obtained are suitable and can be applied to control the angular oscillation of the output to the compressed air engine as a stable system by controlling the saturation.

Downloads

Não há dados estatísticos.

Referências

Ahmad, F., Hitam, A. L., Hudha, K. & Jamaluddin, H., 2011. Position tracking of slider crank mechanism using PID controller optimized by Ziegler Nichol’s method. Journal of Mechanical Engineering and Technology, vol. 3. pp. 27-41.

Alves, A. C., Tusset, A. M., Piccirillo, V., Balthazar, J. M. & Bueno, A. M., 2015. Mathematical model and numerical simulations for control the connecting-rod crankshaft engine with compressed air. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering / International Conference on Nonlinear Dynamics, Chaos, Control and Applications to Engineering, COBEM 2015 / ICONE 2015, Rio de Janeiro, pp. 1-8.

Askari, M. R., Shahrokhi, M. & Talkhoncheh, M. K., 2016. Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation. Fuzzy Sets and Systems, 2016.

Awrejcewicz, J. & Kudra, G., 2003. Modeling and numerical investigation of nonlinear dynamics of a mono-cylinder combustion engine. Proceedings of DETC’03 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Chicago, Illinois, USA, pp. 1-9.

Brown, T. L., Atluri, V. P. & Schmiedeler, J. P., 2014. A low-cost hybrid drivetrain concept based on compressed air energy storage. Applied Energy, vol. 134, pp. 477-489.

Chuang, C. W., 2007. PC-based pseudo-model following discrete integral variable structure control of positions in slider-crank mechanisms. Journal of Sound and Vibration, vol. 301, pp. 510”“520.

Chuang, C. W., Lee, C. D. & Huang, C. L., 2006. Applying experienced self-tuning PID control to position control of slider crank mechanisms. Proceedings of the SPEEDAM 2006, International Symposium on Power Electronics, Electrical Drives, Automation and Motion , Taormina, Sicily, pp. 652 ”“ 657

Fung, R. F., Chiang, C. L. & Chen, S. J., 2009. Dynamic modelling of an intermittent slider”“crank mechanism. Applied Mathematical Modelling, vol. 33, pp. 2411”“2420.

Galeani, S., Onori, S., Teel, A.R., & Zaccarian, L., 2008. A magnitude and rate saturation model and its use in the solution of a static anti-windup problem. Systems & Control Letters, vol. 57, n.1, pp. 1-9.

Hung, Y.-H., Chen, J.-H., Wu, C.-H. & Chen, S.-Y., 2016. System design and mechatronics of an air supply station for air-powered scooters. Computers & Electrical Engineering, 2016.

Kao, C. C., Chuang, C. W. & Fung, R. F., 2006. The self-tuning PID control in a slider”“crank mechanism system by applying particle swarm optimization approach. Mechatronics, vol. 16, pp. 513”“522.

Liermann, M., Samhoury, O. & Atshan, S., 2015. Energy efficiency of pneumatic power takeoff for wave energy converter. International Journal of Marine Energy, 2015.

Lin, F.J., Fung, R.F., Lin, H.H. & Hong, C. M., 2001. A supervisory fuzzy neural network controller for slider-crank mechanism. Mechatronics, vol. 11, pp. 227-250.

Noziaki, R. R., Balthazar, J. M. &Tusset, A. M., Pontes JR, B. R. and Bueno, A. M., 2013. Nonlinear control system applied to atomic force microscope including parametric erros. Journal of Control, Automation and Electrical Systems, vol. 3, n. 3, pp. 223-231.

Oravec, J. & Bakošová, M., 2015. Robust Model Predictive Control Based on Nominal System Optimization and Control Input Saturation. IFAC-PapersOnLine, vol. 48, n. 14, pp. 314-319.

Shaw, D., Yu, J. J. & Chieh, C., 2013. Design of a hydraulic motor system driven by compressed air. Energies, vol. 6, n. 7, pp. 3149”“3166.

Shi, Y., Wu, T., Cai, M., Wang, Y. & Xu, W., 2016. Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle. Applied Energy, vol. 171, pp. 77”“85.

Tusset, A. M., Bueno, A. M., Nascimento, C. B., Kaster, M. S. & Balthazar, J. M., 2013.

Nonlinear state estimation and control for chaos suppression in MEMS resonator. Shock and Vibration, vol. 20, pp. 749-761.

Wang, X., Saberi, A. & Stoorvogel, A. A., 2013. Stabilization of linear system with input saturation and unknown constant delays. Automatica, vol. 49, n. 12, pp. 3632-3640.

Wang, X., Su, H., Wang, X., & Chen, G. 2016. An overview of coordinated control for multiagent systems subject to input saturation. Perspectives in Science, vol. 7, pp. 133-139.

Wang, Y. W.; You, J. J.; Sung, C. K. & Huang, C. Y., 2014. The Applications of Piston Type Compressed Air Engines on Motor Vehicles. Procedia Engineering, vol. 79, pp. 61 ”“ 65.

Yu, Q. & Cai, M., 2015. Experimental Analysis of a Compressed Air Engine. Journal of Flow Control, Measurement & Visualization, vol. 3, p. 144-153.

Yu, Q., Shi, Y., Cai, M. & Xu, W., 2016, Fuzzy logic speed control for the engine of an airpowered vehicle. Advances in Mechanical Engineering, vol. 8, n. 3, pp. 1”“11.

Zheng, Z. & Sun, L., 2016. Path following control for marine surface vessel with uncertainties and input saturation. Neurocomputing, vol. 177, pp. 158-167.

Downloads

Publicado

2019-01-07

Como Citar

Alves, A. de C., Tusset, A. M., Balthazar, J. M., Rocha, R. T., & Janzen, F. C. (2019). COMPRESSED AIR ENGINE WITH ACTIVE CONTROL UNDER PRESSURE SATURATION IN THE CONTROL OF OSCILLATING ROTATION. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(13), 27–47. https://doi.org/10.26512/ripe.v2i13.21633