Propriedades Ópticas de Nanofios de Óxido de Cério
Keywords:
Cerium Oxide, Nanowires, Optical PropertiesAbstract
This work presents the optical characterization of cerium oxide nanowires at the Optical, Electronic and Photonic Properties Research Group at Federal University of Paraná. Seven samples produced by the electrospinning technique were studied and underwent heat treatment whose calcination temperatures ranged from 350 °C to 950 °C. For the characterization of their optical properties, the techniques of photoluminescence spectroscopy (PL) and cathodoluminescence spectroscopy (CL) were used. The spectra obtained in the PL measurements reveal structures in the region of low wavelengths that can be attributed to the cerium oxide gap, in addition to the presence of large defect bands in the visible and infrared region of the spectrum. These bands are attributed to oxygen vacancies according to the literature, and their defect aspect was confirmed through PL measurements as a function of the 476 nm laser power. The spectra obtained by the CL measurements were displaced to regions of greater energy, due to the electron beam favoring the excitation of more energetic states linked to the CeO2 band structure, since both the beam energy and its quantum efficiency are greater than using light excitation. However, it was possible to observe a correlation between the two techniques, so that one is complementary to the other. After characterization, it was not possible to establish a clear correlation between the calcination temperature of the samples and variations in their optical properties.
Downloads
References
Yang, C., Li, Q., Xia, Y., Lv, K., & Li, M. (2019). Enhanced visible-light photocatalytic CO2 reduction performance of Znln2S4 microspheres by using CeO2 as cocatalyst. Applied Surface Science, 464, 388-395.doi: 10.1016/j.apsusc.2018.09.099395.
Aysu, T., Fermoso, J., & Sanna, A. (2018). Ceria on alumina support for catalytic pyrolysis of Pavlova sp. microalgae to high-quality bio-oils. Journal of Energy Chemistry, 27(3), 874–882. doi:10.1016/j.jechem.2017.06.014.
Fu, Z., Yu, Y., Li, Z., Han, D., Wang, S., Xiao, M., & Meng, Y. (2018). Surface Reduced CeO2 Nanowires for Direct Conversion of CO2 and Methanol to Dimethyl Carbonate: Catalytic Performance and Role of Oxygen Vacancy. Catalysts, 8(4), 164. doi:10.3390/catal8040164.
Da Silva, A. G. M., Batalha, D. C., Rodrigues, T. S., Candido, E. G., Luz, S. C., de Freitas, I. C., … Fajardo, H. V. (2018). Sub-15 nm CeO2 nanowires as an efficient non-noble metal catalyst in the room-temperature oxidation of aniline. Catalysis Science & Technology, 8(7), 1828–1839. doi:10.1039/c7cy02402a.
ZHOU, K., WANG, X., SUN, X., PENG, Q., & LI, Y. (2005). Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis, 229(1), 206–212. doi:10.1016/j.jcat.2004.11.004.
Lin, K.-S., & Chowdhury, S. (2010). Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review. International Journal of Molecular Sciences, 11(9), 3226–3251. doi:10.3390/ijms11093226.
Lu, X., Zhai, T., Cui, H., Shi, J., Xie, S., Huang, Y., … Tong, Y. (2011). Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods. Journal of Materials Chemistry, 21(15), 5569. doi:10.1039/c0jm04466k.
Tang, Z.-R., Zhang, Y., & Xu, Y.-J. (2011). A facile and high-yield approach to synthesize one-dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants. RSC Advances, 1(9), 1772. doi:10.1039/c1ra00518a.
Huang, M., Yao, Q., Feng, G., Zou, H., & Lu, Z.-H. (2020). Nickel–Ceria Nanowires Embedded in Microporous Silica: Controllable Synthesis, Formation Mechanism, and Catalytic Applications. Inorganic Chemistry. doi:10.1021/acs.inorgchem.0c00600.
Li, S., Lu, X., Shi, S., Chen, L., Wang, Z., & Zhao, Y. (2020). Europium-Doped Ceria Nanowires as Anode for Solid Oxide Fuel Cells. Frontiers in Chemistry, 8. doi:10.3389/fchem.2020.00348.
Karl Chinnu, M., Vijai Anand, K., Mohan Kumar, R., Alagesan, T., & Jayavel, R. (2013). Formation and characterisation of CeO2and Gd:CeO2nanowires/rods for fuel cell applications. Journal of Experimental Nanoscience, 10(7), 520–531. doi:10.1080/17458080.2013.845916.
Jaiswal, N., Tanwar, K., Suman, R., Kumar, D., Uppadhya, S., & Parkash, O. (2018). A brief review on ceria based solid electrolytes for solid oxide fuel cells. Journal of Alloys and Compounds. doi:10.1016/j.jallcom.2018.12.015.
Steele, B. (2000). Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics, 129(1-4), 95–110. doi:10.1016/s0167-2738(99)00319-7.
Liao, L., Mai, H. X., Yuan, Q., Lu, H. B., Li, J. C., Liu, C., … Yu, T. (2008). Single CeO2 Nanowire Gas Sensor Supported with Pt Nanocrystals: Gas Sensitivity, Surface Bond States, and Chemical Mechanism. The Journal of Physical Chemistry C, 112(24), 9061–9065. doi:10.1021/jp7117778.
Li, Z., Niu, X., Lin, Z., Wang, N., Shen, H., Liu, W., … Wang, Z. (2016). Hydrothermally synthesized CeO 2 nanowires for H 2 S sensing at room temperature. Journal of Alloys and Compounds, 682, 647–653. doi:10.1016/j.jallcom.2016.04.311.
Li, X., Liu, K., Wang, W., & Bai, X. (2019). Atomic-scale imaging of the defect dynamics in ceria nanowires under heating by in situ aberration-corrected TEM. Science China Chemistry. doi:10.1007/s11426-019-9624-x.
Prabaharan, D. M. D. M., Sadaiyandi, K., Mahendran, M., & Sagadevan, S. (2016). Structural, Optical, Morphological and Dielectric Properties of Cerium Oxide Nanoparticles. Materials Research, 19(2), 478–482. doi:10.1590/1980-5373-mr-2015-0698.
Li, H., Meng, F., Gong, J., Fan, Z., & Qin, R. (2017). Structural, morphological and optical properties of shuttle-like CeO 2 synthesized by a facile hydrothermal method. Journal of Alloys and Compounds, 722, 489–498.doi:10.1016/j.jallcom.2017.06.156.
HE, L., SU, Y., Lanhong, J., & SHI, S. (2015). Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. Journal of Rare Earths, 33(8), 791–799. doi:10.1016/s1002-0721(14)60486-5.
Caron, R.F. (2017). Fabricação e Caracterização de Nanofios de Óxido de Cério. Dissertação (Mestrado em Engenharia e Ciência dos Materiais) – Universidade Federal do Paraná. Curitiba. p. 80. 2017.
Moos, R. (2018). Técnicas experimentais de propriedades ópticas: como idéias antigas são aplicadas aos novos sistemas nanoestruturados. Trabalho de Conclusão de Curso (Licenciatura em Física) – Universidade Federal do Paraná. Curitiba. p.64. 2018.
Goldstein et al. Scanning Electron Microscopy and X-Ray Microanalysis, Fourth Edition, Springer, 2018.
Masalov, A., Viagin, O., Maksimchuk, P., Seminko, V., Bespalova, I., Aslanov, A., … Zorenko, Y. (2014). Formation of luminescent centers in CeO2 nanocrystals. Journal of Luminescence, 145, 61–64. doi:10.1016/j.jlumin.2013.07.020.
El Desouky, F. G., Saadeldin, M. M., Mahdy, M. A., Wahab, S. M. A. E., & El Zawawi, I. K. (2020). Impact of calcination temperature on the structure, optical and photoluminescence properties of Nanocrystalline Cerium oxide thin films. Materials Science in Semiconductor Processing, 111, 104991. doi:10.1016/j.mssp.2020.10499.
Mochizuki, S., & Fujishiro, F. (2009). The photoluminescence properties and reversible photoinduced spectral change of CeO2bulk, film and nanocrystals. Physica Status Solidi (b), 246(10), 2320–2328. doi:10.1002/pssb.200844419.
Mochizuki, S., Fujishiro, F., & Kano, S. (2009). Photo-induced spectral change in CeO2 and CeO2-based solid solution at room temperature. Physica B: Condensed Matter, 404(23-24), 4858–4861. doi:10.1016/j.physb.2009.08.180.
Seminko, V., Maksimchuk, P., Bespalova, I., Masalov, A., Viagin, O., Okrushko, E., … Malyukin, Y. (2016). Defect and intrinsic luminescence of CeO2nanocrystals. Physica Status Solidi (b), 254(4), 1600488. doi:10.1002/pssb.201600488.
Choudhury, B., Chetri, P., & Choudhury, A. (2013). Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles. Journal of Experimental Nanoscience, 10(2), 103–114. doi:10.1080/17458080.2013.801566.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Interdisciplinar de Pesquisa em Engenharia
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.