Um modelo biomecânico para a resposta do sistema imune à inflamação do ventrículo esquerdo incluindo efeitos de remodelagem e crescimento

Authors

  • Isabela Alves Campice de Oliveira Universidade Federal de Juiz de Fora
  • Marcelo Lobosco Universidade Federal de Juiz de Fora
  • Rodrigo Weber dos Santos Universidade Federal de Juiz de Fora
  • Bernardo Martins Rocha Universidade Federal de Juiz de Fora

Keywords:

Computational mechanics, growth, remodeling, finite element method, biomechanics.

Abstract

This article addresses the cardiac biomechanical response with growth during cardiac muscle inflammation. Biological tissue reacts to stimuli through growth and remodeling, with special relevance in the heart due to heart disease. This study presents a mathematical model that describes the cardiac biomechanical response during inflammation, considering the diffusion of cytokines and the hypertrophy caused by them. The model uses continuous and volumetric growth mechanics, coupled with a cytokine diffusion model. Computational experiments are performed to demonstrate the proposed approach. This work presents a new model that may be useful to understand the complex mechanisms associated with the biomechanical responses of the heart in inflammatory conditions, contributing to the field of biomechanics.

Downloads

Download data is not yet available.

References

Amin, M. N., Siddiqui, S. A., Ibrahim, M., Hakim, M. L., Ahammed, M. S., Kabir, A., and Sultana, F. (2020). Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Medicine, 8:2050312120965752.

Campos, J., Sundnes, J., Dos Santos, R., and Rocha, B. (2020). Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle. Philosophical Transactions of the Royal Society A, 378(2173):20190381.

Fajgenbaum, D. C. and June, C. H. (2020). Cytokine storm. New England Journal of Medicine, 383(23):2255–2273.

Gharee-Kermani, M. and Pham, S. (2001). Role of cytokines and cytokine therapy in wound healing and fibrotic diseases. Current Pharmaceutical Design, 7(11):1083–1103.

Holzapfel, G. A. (2002). Nonlinear solid mechanics: a continuum approach for engineering science.

Kuhl, E. (2014). Growing matter: a review of growth in living systems. Journal of the Mechanical Behavior of Biomedical Materials, 29:529–543.

Logg, A., Mardal, K.-A., and Wells, G. (2012). Automated solution of differential equations by the finite element method: The FEniCS book, volume 84. Springer Science & Business Media.

Paul, W. (2008). Fundamental Immunology. Fundamental Immunology. Wolter Kluwer/Lippincott Williams & Wilkins.

Rodriguez, E. K., Hoger, A., and McCulloch, A. D. (1994). Stress-dependent finite growth in soft elastic tissues. Journal of biomechanics, 27(4):455–467.

Sáez, P. and Kuhl, E. (2016). Computational modeling of acute myocardial infarction. Computer methods in biomechanics and biomedical engineering, 19(10):1107–1115.

Taber, L. A. (1995). Biomechanics of growth, remodeling, and morphogenesis.

Thomas, T. P. and Grisanti, L. A. (2020). The dynamic interplay between cardiac inflammation and fibrosis. Frontiers in physiology, 11:529075.

Yoshida, K. and Holmes, J.W. (2021). Computational models of cardiac hypertrophy. Progress in biophysics and molecular biology, 159:75–85.

Zhang, Y., Bauersachs, J., and Langer, H. F. (2017). Immune mechanisms in heart failure. European Journal of Heart Failure, 19(11):1379–1389.

Published

2024-01-31

How to Cite

Alves Campice de Oliveira, I., Lobosco, M., Weber dos Santos, R., & Martins Rocha, B. (2024). Um modelo biomecânico para a resposta do sistema imune à inflamação do ventrículo esquerdo incluindo efeitos de remodelagem e crescimento. Revista Interdisciplinar De Pesquisa Em Engenharia, 9(2), 57–65. Retrieved from https://periodicos.unb.br/index.php/ripe/article/view/52303