Simulação da Equação de Burgers Invíscida e Estocástica

Authors

  • Ardson dos Santos Vianna Jr. USP
  • Rafael Giglio Gomes Universidade de São Paulo, Escola Politécnica, Departamento de Engenharia Química, Brasil
  • M Reis Universidade de São Paulo, Escola Politécnica, Departamento de Engenharia Química, Brasil

Keywords:

EDP estocástica, Python, Trajetória amostral

Abstract

The Burgers equation is the first step in solving the Navier–Stokes equation, which is fundamental one in the study of computational fluid dynamics. Even the inviscid version of the Burgers equation results in a nonlinear partial differential equation, which should be solved with the proper approach. In this work, the inviscid and stochastic Burgers equation is solved. Euler's explicit method was used to integrate time, generating a march algorithm. For the space, the backward finite difference formula was used. Randomness was inserted through a Wiener process in time. The parameters evaluated here are part of the Aksan and Özdeş article (2004), that was used to verify the deterministic model. By using the approach here described, the nonlinearity and randomness were resolved, allowing the progression to the solution of more complex models. The simulation result are sample paths that represent the velocity profiles with stochastic oscillations, a physical phenomenon that occurs in nature.

Downloads

Download data is not yet available.

References

Aksan, E.N., and Özdeş A. A numerical solution of Burgers' equation. Appl. Math. Comput. 2004, 156.2, 395-402. https://doi.org/10.1016/j.amc.2003.07.027

Babu, A., Han, B., and Asharaf, N. Numerical solution of the viscous burgers’ equation using localized differential quadrature method. Partial Differ. Equ. Appl. Math. 2021, 4, 100044 https://doi.org/10.1016/j.padiff.2021.100044

Mukundan, V., and Awasthi, A. Efficient numerical techniques for Burgers’ equation. Appl. Math. Comput 2015, 262, 282-297. https://doi.org/10.1016/j.amc.2015.03.122

Bianchi, L. A., and Flandoli, F. Stochastic Navier-Stokes equations and related models. Milan J. Math. 2020, 88, 225-246. https://doi.org/10.1007/s00032-020-00312-9

Bertini, L., Cancrini, N., and Jona-Lasinio, G. The stochastic Burgers equation. Commun. Math. Phys. 1994,165, 211-232. https://doi.org/10.1007/BF02099769

Vianna Jr., A. S., and Nichele, J. Modeling an annular flow tubular reactor. Chem. Eng. Sci. 2010, 65.14, 4261-4270. https://doi.org/10.1016/j.ces.2010.04.016

Nakama, C. S. M., Siqueira, A. F., and Vianna Jr., A. S. Stochastic axial dispersion model for tubular equipment. Chem. Eng. Sci. 2017, 171, 131-138. https://doi.org/10.1016/j.ces.2017.05.024

Vianna Jr., A.S. Equações Diferenciais Uma visão intuitiva usando exemplos. Editora Blucher, São Paulo, 2021.

Vianna Jr., A.S., Oliveira, C. J. Equações Diferenciais Estocásticas na Engenharia Química. VETOR 2020, 30(2), 14-21. https://doi.org/10.14295/vetor.v30i2.12971

Kloeden, P. E., Platen, E., Schurz, H. Numerical solution of SDE through computer experiments, Springer Science & Business Media, 2002.

Gaines, J. G. Numerical experiments with S(P)DE's. London Mathematical Society Lecture Note Series, 1995, 55-71.

Gubinelli, M., and Perkowski, N. The infinitesimal generator of the stochastic Burgers equation. Probability Theory and Related Fields 2020, 178(3-4), 1067-1124. https://doi.org/10.1007/s00440-020-00996-5

Published

2024-01-31

How to Cite

dos Santos Vianna Jr., A., Gomes, R. G., & Reis, M. (2024). Simulação da Equação de Burgers Invíscida e Estocástica. Revista Interdisciplinar De Pesquisa Em Engenharia, 9(2), 9–14. Retrieved from https://periodicos.unb.br/index.php/ripe/article/view/52165