Propriedades críticas fora do equilíbrio e transição de fase em uma reação catalítica com efeito de volume excluído
Keywords:
simulação computacional, expoentes críticos dinâmicos, modelo catalítico, probabilidade críticaAbstract
We simulated a catalytic reaction model in a one-dimensional lattice, where big and small particles could be adsorbed in, obeying their own probabilities. The dynamic consisted of the adsorption of particles in the lattice, the reaction between them and the spontaneous desorption of the big-small particle pair. Then, the critical probability in which the phase transition took place from its absorbent to active state was obtained, as well as the dynamic critical exponents that characterized this transition. The values obtained with the simulations compared well with those known for the directed percolation universality class.
Downloads
References
Landau, D.P.; Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics, 2nd ed.; Cambridge University Press: New York, USA, 2005.
Lobo, P. H. F.; Arashiro, E.; Silva, A. C.; Pinheiro, C. F. S. A smooth path to plot hydrogen atom via Monte Carlo method. Rev. Bras. Ens. Fis. 2019, 41, e20190073-2. https://doi.org/10.1590/1806-9126-RBEF-2019-0073
Keesen, F.; e Silva, A. C.; Arashiro, E.; Pinheiro, C. F. S. Simulations of populations of Sapajus robustus in a fragmented landscape. Ecol. Modell. 2017, 344, 38-47. https://doi.org/10.1016/j.ecolmodel.2016.11.003
Keesen, F.; e Silva, A. C.; Pinheiro, C. F. S.; Arashiro, E.; Ligeiro, Y.; de Viveiros Grelle, C. E. New applications of an old individual-based model for biological dynamics. Ecol. Modell. 2023, 476, 110234. https://doi.org/10.1016/j.ecolmodel.2022.110234
Lobo, P. H. F.; Mendonça, S. M.; Lazo, M. J.; Arashiro, E. Study of patterns of emerging clusters in a dynamic of chase and escape. Ci. e Nat. 2020, 42, 1-9. https://doi.org/10.5902/2179460X37562
Lourenço, G. M.; Keesen, F.; Fagundes, R.; Luna, P.; Silva, A. C.; Ribeiro, S. P.; Arashiro, E. Recruitment and entropy decrease during trail formation by foraging ants. Insect. Soc. 2020, 67, 59–69. https://doi.org/10.1007/s00040-019-00728-6
Ruziska, F. M.; Arashiro, E.; Tomé, T. Stochastic dynamics for two biological species and ecological niches. Physica A 2018, 489, 56-64. https://doi.org/10.1016/j.physa.2017.07.016
Mordechai, S. (Ed). Applications of Monte Carlo Method in Science and Engineering, 1st ed.; IntechOpen: London, England, 2011.
Shonkwiler, R. W. Finance with Monte Carlo, 1st ed.; Springer: New York, USA, 2013.
Carsey, T. M.; Harden, J. J. Monte Carlo simulation and resampling methods for social science. 1st ed.; Sage Publications: Los Angeles, USA, 2013.
Seco, J.; Verhaegen, F. (Eds.). Monte Carlo techniques in radiation therapy. 1st ed.; CRC Pres: Boca Raton, USA, 2013.
Arashiro, E.; Drugowich de Felício, J. R. Short-time critical dynamics of the Baxter-Wu model. Phys. Rev. E 2003, 67, 046123. https://doi.org/10.1103/PhysRevE.67.046123
Arashiro, E.; Drugowich de Felício, J. R.; Hansmann, U. H. Short-time dynamics of polypeptides. J. Chem. Phys. 2007, 126, 045107. https://doi.org/10.1063/1.2430709
Argolo, C.; Otaviano, H.; Gleria, I.; Arashiro, E.; Tome, T. Critical behavior and threshold of coexistence of a predator-prey stochastic model in a 2D lattice. Int J Bifurcat Chaos 2010, 20, 309-314. https://doi.org/10.1142/S0218127410025752
Fernandes, H. A.; Silva, R.; Santos, E. D.; Gomes, P. F.; Arashiro E. Alternative method to characterize continuous and discontinuous phase transitions in surface reaction models. Phys. Rev. E 2016, 94, 022129. https://doi.org/10.1103/PhysRevE.94.022129
Hua, D. Y.; Zhu, Y. J.; Ma, Y. Q. Critical exponents of the continuous phase transition in Ziff-Gulari-Barshad model. Int. J. Mod. Phys. B 2004, 18, 859-866. https://doi.org/10.1142/S0217979204024008
Da Costa, E. C.; Figueiredo, W. Catalysis with Competitive Reactions: Static and Dynamical Critical Behavior. Braz. J. Phys. 2003, 33, 487-500. https://doi.org/10.1590/S0103-97332003000300010
Ziff, R. M.; Gulari E.; Barshad, Y. Kinetic Phase Transitions in an Irreversible Surface-Reaction Model. Phys. Rev. Lett. 1986, 56, 2553. https://doi.org/10.1103/PhysRevLett.56.2553
Meakin, P.; Scalapino, D. J. Simple models for heterogeneous catalysis: Phase transition-like behavior in nonequilibrium systems. J. Chem. Phys. 1987, 87, 731-741. https://doi.org/10.1063/1.453570
Jensen, I.; Fogedby, H. C.; Dickman, R. Critical exponents for an irreversible surface reaction model, Phys. Rev. A 1990, 41, 3411(R). https://doi.org/10.1103/PhysRevA.41.3411
Huse, D. A. Remanent magnetization decay at the spin-glass critical point: A new dynamic critical exponent for nonequilibrium autocorrelations. Phys. Rev. B 1989, 40, 304. https://doi.org/10.1103/PhysRevB.40.304
Janssen, H.K.; Schaub, B.; Schmittmann, B. New universal short-time scaling behaviour of critical relaxation processes. Z. Physik B - Condensed Matter 1989, 73, 539–549. https://doi.org/10.1007/BF01319383
Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 2000, 49, 815–958. https://doi.org/10.1080/00018730050198152
Da Silva, R.; Alves, N. A.; De Felício, J. R. D. Mixed initial conditions to estimate the dynamic critical exponent in short-time Monte Carlo simulation. Phys. Lett. A 2002, 298, 325-329. https://doi.org/10.1016/S0375-9601(02)00571-6
Park, H.; Köhler, J.; Kim I. M.; ben Avraham, D.; Redner, S., Excluded volume effects in heterogeneous catalysis: Reactions between “dollars” and “dimes”. J. Phys. A 1993, 26, 2071–2079.
Henkel, M.; Hinrichsen, H.; Lübeck, S. Non-equilibrium phase transitions, 1st ed.; Springer: Berlin, Germany, 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Interdisciplinar de Pesquisa em Engenharia
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.