Preliminary study the selection of sites for installation offshore wind farms on the coast of Rio Grande do Sul

Authors

  • Paula Silva Gonçalves Universidade Federal do Rio Grande
  • Nisia Krusche Universidade Federal do Rio Grande - FURG
  • Camila e Silva Gomes Universidade Federal do Rio Grande - FURG
  • Humberto Pinheiro Universidade Federal de Santa Maria - UFSM

Keywords:

Atmospheric physics, wind farm planning, siting, offshore wind farm siting

Abstract

Demand for energy and sustainability, power generation in the world is leaning towards wind farms. In general, offshore wind farms are considered more efficient compared to onshore wind farms due to the absence of obstacles. They have more wind potential, as they have a stronger and more consistent wind profile. Among the various criteria, site selection is essential in the development of a wind farm. The objective of this research is to indicate potential locations for the construction of wind farms on the coast of Rio Grande do Sul and the type of foundation suitable for the installation, considering the intensity of the wind in the region, the coast bathymetry, as navigation and as more combined transmission lines.

Downloads

Download data is not yet available.

References

Atlas Socioeconomico do Rio Grande do Sul. Geração e Transmissão de Energia Elétrica ”“ RS. Disponível online: https://atlassocioeconomico.rs.gov.br/geracao-e-transmisao-de-energia (acessado em 7 de outubro de 2020).

Azevedo, S. S. P.; Pereira Junior, A. O.; Silva, N. F.; Araújo, R. S. B.; Carlos Júnior, A. Assessment of Offshore Wind Power Potential along the Brazilian Coast. Energies. 2020, 13, 2557.

Bailey, H.; Brookes; K. L.; Thompson, P. M. Assessing environmental impacts ofoffshore wind farms: lessons learned and recommendations for the future. Aquatic Biosystems 2014, 1”“13. DOI 10.1186/2046-9063-10-8.

Beiter, P.; Musial, W. Terminology Guideline for Classifying Offshore Wind Energy Resources. NREL 2016, 1-24.

Biswal, Dr. Gouranga & Shukla, Dr Soorya. Site Selection for Wind Farm Installation. IJIREEICE 2015. 3, ed. 8, 2321-2004. DOI 10.17148/IJIREEICE.2015.3814.

Bresesti, P.;Kling, W. L.; Hendriks, R. L.; Vailati, R. HVDC Connection of Offshore Wind Farms to the Transmission System. IEEE Transactions on Energy Conversion. 2007, v. 22, p. 37-43.

Breton, S.P., Moe, G. Status, plans and technologies for offshore wind turbines in Europe and North America. Renew. Energy 2009. 34 (3), 646”“654.

Copernicus. Climate Data Store. Disponível online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (acessado em 10 de julho de 2019).

Chaithanya,S.; Reddy, V.N.B.; Kiranmay, R. A State of Art Review on Offshore Wind Power Transmission Using Low Frequency AC System. IJRER 2018, 08, 01-09.

CLEANPNG. Disponível online: https://www.cleanpng.com/png- offshore-windpark-rentel-wind-farm-wind-power-zeeb-1811360/preview.html (acessado em 1 de julho de 2019).

Douvere, F.; Maes, F.; Vanhulle, A.; Schrijvers, J. The role of marine spatial planning in sea use management: The Belgian case. Marine Policy. 2007, 182 - 191.

Esteban, M. D. and Diez, J.J and Lopez-Gutierrez, J. and Negro, V. Why offshore wind energy?. 2011, v.36. DOI 10.1016/j.renene.2010.07.009.

Garvey,S.D. and Pimm, A.J. and Buck, J.A. and Woolhead,S. and Liew, K.W. and Kantharaj,B. and Garvey, J.E. and Brewster,B.D. Analysis of a Wind Turbine Power Transmission System with Intrinsic Energy Storage Capability. Wind Engineering. 2015, p. 149-173. DOI 10.1260/0309-524X.39.2.149.

MarineTraffic: Global Ship Tracking Intelligence. Disponível online: https://www.marine traffic.com (Acessado em 12 de dezembro de 2019).

Gruber, N.; Toldo, E.; Barboza, E.; Nicolodi, J. L. Equilibrium beach and shoreface profile of the Rio Grande do Sul coast - South of Brazil. Journal of Coastal Research, 2003.

Hao, E., Liu, C. Evaluation and comparison of anti-impact performance to offshore wind turbine foundations: Monopile, tripod, and jacket. Ocean Engineering. 2017. 130, 218”“227.

International Renewable Energy Agency (IRENA). Electricity Storage and Renewables: Costs and Markets to 2030. 2017. Disponível online: www.irena.org (Acessado em 11 de maio de 2020).

Lund, I. A. Map-Pattern Classification by Statistical Methods. Journal of Applied Meteorology. 1963, p. 56-65. DOI 10.1175/1520-0450(1963)002<0056:MPCBSM>2.0.CO;2.

National Centers for Environmental Information (NCEI). Disponível online: https://www.ngdc.noaa.gov/ (acessado em 10 de abril de 2020).

Pinho, P. de; Madureira, L.S.P.; Calliari, L.J.; Weigert,S.C.; Costa, P.L. 3D Bathymetry and acoustic seabed classification of Pelotas Basin, Brazil. 2016, p. 117-129. DOI 10.22564/rbgf.v34i1.863.

Pryor, S.C. and Barthelmie, R.J. (2001), Comparison of potential power production at on” and offshore sites. Wind Energ., 4: 173-181. https://doi.org/10.1002/we.54

Richardson, D.The predictability of UK drought using European weather patterns. School of Engineering Newcastle University. Australia, 2019, p. 198.

Sánchez , S.; López-Gutiérrez , J.; Negro, V.; Esteban, M.D. Foundations in Offshore Wind Farms: Evolution, Characteristics and Range of Use. Analysis of Main Dimensional Parameters in Monopile Foundations. J. Mar. Sci. Eng. 2019, 7(12), 441. Disponível em https://doi.org/10.3390/jmse7120441.

Silva, A.J.V.C. Potencial Eólico Offshore no Brasil: Localização de Áreas Nobres através de Análise Multicritério. Universidade Federal do Rio de Janeiro. 2019.

Stehly, T. J.; Beiter, P. C. 2018 Cost of Wind Energy Review. 2020. DOI 10.2172/1581952.

Toke, D., 2011. The UK offshore wind power programme: a sea-change in UK energy policy? Energ. Policy 39 (2), 526”“534.

Tozzi, H.A.M. and Calliari, L.J. Influências das Tempestades Extratropicais sobre o estoque de Sedimentos das Praias entre Rio Grande e Chuí, RS. 1997, p. 85-87.

Tuchtenhagen, P.; Carvalho, G.G. de; Martins, G.; Silva, P.E. da; Oliveira, C.P.de; Andrade, L.M.B.; Araújo, J.M. de; Mutti, P.R.; Lucio, P.S.; Silva, C.M.S. WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil. 2020, v.190. DOI 10.1016/j.energy.2019.116341.

Yeter, B .; Garbatov, Y .; Guedes Soares, C. Avaliação de modelos de previsão de danos por fadiga para estruturas de suporte fixas de turbinas eólicas offshore. Int. J. Fatigue 2016, 87, 71-80.

Published

2022-08-07

How to Cite

Silva Gonçalves, P., Krusche, N., e Silva Gomes, C., & Pinheiro, H. . (2022). Preliminary study the selection of sites for installation offshore wind farms on the coast of Rio Grande do Sul. Revista Interdisciplinar De Pesquisa Em Engenharia, 8(1), 48–58. Retrieved from https://periodicos.unb.br/index.php/ripe/article/view/35421