Comparison of continuous case with continuous case piecewise continuous with perfect contact for the elliptical equation via asymptotic homogenization method
Keywords:
Conductive means., Continuous and piecewise constant microperiodic heterogeneity., Effective behavior., Asymptotic homogenization., Maximum principle.Abstract
The methods of mathematical homogenization allow the effective properties of heterogeneous media to be found with great precision and rigor based on the physical and geometric properties of their components. In particular, the asymptotic homogenization method is used to find the coefficients that represent the effective properties of a medium with a periodic structure. The present work aims to study this mathematical homogenization technique to obtain the effective behavior of micro-heterogeneous media, and to apply mathematical formalism to build a formal asymptotic solution of a one-dimensional linear problem with continuous and constant coefficients by parts. Still, the proximity between the solutions of the original and homogenized problems will be mathematically justified. In order to illustrate the theoretical results, an example is presented considering both types of heterogeneity in a case that presents the same effective behavior.
Downloads
References
Bakhvalov, N. S.; Panasenko, G. P. Homogenisation: Averaging processes in periodic media. Dordrecht: Kluwer Academic Publishers, 1989. https://doi.org/10.1007/978-94-009-2247-1
Einstein, A. Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik, v.324, n.2, p.289–306, 1906. https://doi.org/10.1002/andp.19063240204
Kudriavtsev, L. D. Curso de Análisis Matemático: Tomo I. Moscou: Mir, 1983.
Maxwell, J. C. Treatise on Electricity and Magnetism. Oxford: Clarendon Press, 1873.
Rayleigh, L. On the influence of obstacles arranged in a rectangular order upon the properties of medium. Philosophical Magazine, v.34, p.481–502, 1892. https://doi.org/10.1080/14786449208620364
Sadd, M. H. Elasticity: Theory, Applications, and Numerics. Oxford: Elsevier Academic Press, 4ta. Ed., 2020. https://doi.org/10.1016/C2017-0-03720-5
Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York: Springer-Verlag, 2002. https://doi.org/10.1007/978-1-4757-6355-3
Caballero-Pérez, R. O.; Bravo-Castillero, J.; Pérez-Fernández, L. D. A simple scheme for calculating the energy harvesting figures of merit of porous ceramics. Energy Harvesting and Systems, v. 7, n. 1, p. 25-32, 2020a. https://doi.org/10.1515/ehs-2021-0001
Hashin, Z. Analysis of composite materials—a survey. Journal of Applied Mechanics, v. 50, p. 481-505, 1983. https://doi.org/10.1115/1.3167081
Caballero-Pérez, R. O., Bravo-Castillero, J., Pérez-Fernández, L. D., Rodríguez-Ramos, R., & Sabina, F. J. Computation of effective thermo-piezoelectric properties of porous ceramics via asymptotic homogenization and finite element methods for energy-harvesting applications. Archive of Applied Mechanics, v. 90, p. 1415–1429, 2020b. https://doi.org/10.1007/s00419-020-01675-6
Sabina, F. J., Guinovart-Díaz, R., Espinosa-Almeyda, Y., Rodríguez-Ramos, R., Bravo-Castillero, J., López-Realpozo, J. C., ... & Sánchez-Dehesa, J. Effective transport properties for periodic multiphase fiber-reinforced composites with complex constituents and parallelogram unit cells. International Journal of Solids and Structures, v. 204, p. 96-113, 2020. https://doi.org/10.1016/j.ijsolstr.2020.08.001
Bravo-Castillero, J., Ramírez-Torres, A., Sabina, F. J., García-Reimbert, C., Guinovart-Díaz, R., & Rodríguez-Ramos, R. Analytical formulas for complex permittivity of periodic composites. estimation of gain and loss enhancement in active and passive composites. Waves in Random and Complex Media, v. 30, n. 4, p. 593-613, 2020. https://doi.org/10.1080/17455030.2018.1546063
Yañez-Olmos, D., Bravo-Castillero, J., Ramírez-Torres, A., Rodríguez-Ramos, R., & Sabina, F. J. Effective coefficients of isotropic complex dielectric composites in a hexagonal array. Technische Mechanik, v. 39, n. 2, p. 220-228, 2019. https://doi.org/10.24352/UB.OVGU-2019-020
Caballero-Pérez, R. O., Bravo-Castillero, J., Pérez-Fernández, L. D., Rodríguez-Ramos, R., & Sabina, F. J. Homogenization of thermo-magneto-electro-elastic multilaminated composites with imperfect contact. Mechanics Research Communications, v. 97, p. 16-21, 2019. https://doi.org/10.1016/j.mechrescom.2019.04.005
Álvarez-Borges, F. E., Bravo-Castillero, J., Cruz, M. E., Guinovart-Díaz, R., Pérez-Fernández, L. D., Rodríguez-Ramos, R., & Sabina, F. J. Reiterated homogenization of a laminate with imperfect contact: gain-enhancement of effective properties. Applied Mathematics and Mechanics, v. 39, n. 8, p. 1119-1146, 2018. https://doi.org/10.1007/s10483-018-2352-6
Guinovart-Sanjuán, D., Vajravelu, K., Rodríguez-Ramos, R., Guinovart-Díaz, R., Bravo-Castillero, J., Lebon, F., & Sabina, F. J. et al. Analysis of effective elastic properties for shell with complex geometrical shapes. Composite Structures, v. 203, p. 278-285, 2018. https://doi.org/10.1016/j.compstruct.2018.07.036
Mattos, Lucas Prado; cruz, Manuel Ernani; Bravo-Castillero, Julián. Finite element computation of the effective thermal conductivity of two-dimensional multi-scale heterogeneous media. Engineering Computations, v. 35 n. 5, p. 2107-2123, 2018. https://doi.org/10.1108/EC-11-2017-0444
Rodríguez-Ramos, R., Otero, J. A., Cruz-González, O. L., Guinovart-Díaz, R., Bravo-Castillero, J., Sabina, F. J., ... & Sevostianov, I. Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method. International Journal of Solids and Structures, v. 190, p. 281-290, 2020. https://doi.org/10.1016/j.ijsolstr.2019.11.014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Interdisciplinar de Pesquisa em Engenharia
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.