Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo
Keywords:
Bayesian Inference; Maximum Likelihood; Markov Chain Monte Carlo (MCMC); Inverse problem; Parameters estimation; Dynamic system.Abstract
Inverse problem techniques have been used in different engineering application aiming to convert observed measurements or data acquired together to the prior knowledge of the system into information about material properties, geometry, locations of anomalies, e.g. cracks and structural damage, excitation force, among others. The present papers aim to estimate parameters of a dynamic system with the inverse problem using Bayesian Inference technique. Multiples studies are presented to analyse the statistical significance of the catches for the settings, making a critical analysis between a solution via Bayesian Inference linked to minimising the objective function with stochastic methods. It applied through stochastic strategies as the Maximum Likelihood (MLE), Least Squares (LSE) and Markov Chains Monte Carlo (MCMC), implemented with the Metropolis-Hastings algorithm (MH). In the estimation, the random parameters assumed distribution inference of Gaussian and Uniform types for different standard deviations. The results demonstrated the efficacy of Bayesian inference to estimates parameter of the oscillator systems from its dynamic response and the statistical parameter information.
Downloads
References
Albuquerque, Emerson B., Cynthia Guzman, Lavinia A. Borges, and Daniel A. Castello. 2018. “A Bayesian Framework for the Calibration of Cohesive Zone Models.” Journal of Adhesion 94 (4): 255”“77. https://doi.org/10.1080/00218464.2016.1268055.
Castello, Daniel Alves, and Thiago Gamboa Ritto. 2015. Quantificação De Incertezas E Estimação De Parâmetros Em Dinâmica Estrutural: Uma Introdução A Partir De Exemplos Computacionais. Vol. 79.
Christen, J Andrés, and Colin Fox. 2005. “Markov Chain Monte Carlo Using an Approximation.” Journal of Computational and Graphical Statistics 14 (4): 795”“810. https://doi.org/10.1198/106186005X76983.
Dashti, Masoumeh, and Andrew M Stuart. 2016. Handbook of Uncertainty Quantification. Handbook of Uncertainty Quantification. https://doi.org/10.1007/978-3-319-11259-6.
Green, P. L., and K. Worden. 2015. “Bayesian and Markov Chain Monte Carlo Methods for Identifying Nonlinear Systems in the Presence of Uncertainty.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2051). https://doi.org/10.1098/rsta.2014.0405.
Hatch, Michael R. 2001. Vibration Simulation Using Matlab Abd Ansys.
Kaipio, Jari P., and Erkki Somersalo. 2006. “Statistical and Computational Inverse Problems.” Applied Mathematical Sciences (Switzerland) 160: i”“339. https://doi.org/10.1007/b138659.
Kruschke, John K. 2010. “Bayesian Data Analysis.” Wiley Interdisciplinary Reviews: Cognitive Science 1 (5): 658”“76. https://doi.org/10.1002/wcs.72.
Lataniotis, C, S Marelli, and B Sudret. 2019. “UQLAB USER MANUAL THE INPUT MODULE.” Szwitzerland.
Lynch, Scott M. 2008. “Introduction to Applied Bayesian Statistics and Estimation for Social Scientists.” Journal of the American Statistical Association 103 (483): 1322”“23. https://doi.org/10.1198/jasa.2008.s250.
Meirovitch, Leonard. 2000. Fundamentals of Vibrations. Handbook of Machinery Dynamics. Virginia: MCGraw Hill. https://doi.org/10.1115/1.1421112.
Mohammad-Djafar, Ali. 1998. “From Deterministic To Probabilistic Approaches To Solve Inverse Problems” 3459 (July): 2”“11.
Myung, In Jae. 2003. “Tutorial on Maximum Likelihood Estimation.” Journal of Mathematical Psychology 47 (1): 90”“100. https://doi.org/10.1016/S0022-2496(02)00028-7.
Oliveira, C., J. Lugon Junior, D.C Knupp, AJ Silva Neto, A Prieto-Moreno, and O Llanes-Santiago. 2018. “Estimation of Kinetic Parameters in a Chromatographic Separation Model via Bayesian Inference.” Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 2018. https://doi.org/10.23967/j.rimni.2017.12.002.
Rouchier, Simon. 2018. “Solving Inverse Problems in Building Physics: An Overview of Guidelines for a Careful and Optimal Use of Data.” Energy and Buildings 166: 178”“95. https://doi.org/10.1016/j.enbuild.2018.02.009.
Schevenels, M., G. Lombaert, and G. Degrande. 2004. “Application of the Stochastic Finite Element Method for Gaussian and Non-Gaussian Systems.” In Proceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA.
FOX, J.-P. Bayesian item response modeling: Theory and applications. [S.l.]: Springer Science & Business Media, 2010.
OLIVEIRA, C. et al. Estimation of kinetic parameters in a chromatographic separation model via bayesian inference. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, v. 34, n. 1, 2018.
SONG, M. et al. Bayesian model updating of nonlinear systems using nonlinear normal modes. Structural control and Health Monitoring, Wiley Online Library, v. 25, n. 12, p. e2258, 2018.
VRUGT, J. A. Markov chain monte carlo simulation using the dream software package: Theory, concepts, and matlab implementation. Environmental Modelling & Software, v. 75, p. 273”“316, 2016.
JIN, S.-S.; JU, H.; JUNG, H.-J. Adaptive markov chain monte carlo algorithms for bayesian inference: recent advances and comparative study. Structure and Infrastructure Engineering, Taylor & Francis, p. 1”“18, 2019.
HAARIO, H. et al. Dram: efficient adaptive mcmc. Statistics and computing, Springer, v. 16, n. 4, p. 339”“354, 2006.
BESAG, J. et al. Bayesian computation and stochastic systems. Statistical science, Institute of Mathematical Statistics, v. 10, n. 1, p. 3”“41, 1995.
DAHLIN, J.; SCHÖN, T. B. Getting started with particle metropolis - hastings for inference in nonlinear dynamical models. arXiv preprint arXiv:1511.01707, 2015.
KHALIL, M. et al. The estimation of time-invariant parameters of noisy nonlinear oscillatory systems. Journal of Sound and Vibration, Elsevier, v. 344, p. 81”“100, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Interdisciplinar de Pesquisa em Engenharia
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.