CFD modeling of the combustion with detailed chemical kinetics mechanism for incompressible laminar flow

Authors

Keywords:

Computational Fluid Dynamics, Combustion of Methane, Detailed Chemical Kinetics Mechanism

Abstract

This work presents a computational fluid dynamics modeling of combustion with detailed chemical kinetics mechanism for incompressible laminar flow. In CFD modeling, the velocity field is obtained by solving the Navier-Stokes equations, the temperature field is obtained by solving an energy conservation equation, and the gas mixture composition is obtained by solving the conservation equations of individual chemical species a the GRI-MECH 3.0 reaction mechanism is used in the calculation of chemical kinetics. The numerical method for discretization of a generic conservation equation and the operator splitting technique used for the evaluation of chemical source terms are presented in detail. A computer code programmed in the Matlab language is used to simulate a test case and experimental data from a laminar diffusion flame of methane are used to validate the proposed CFD modeling of combustion.

Downloads

Download data is not yet available.

References

Westbrook, C.K.; Dryer, F.L. Simplified Reaction Mechanisms for the oxidation of hydrocarbon fuels in Flames.

Combust. Sci. and Tech 1981, Volume 27, pp. 31-43.

Mitchell, R.E.; Sarofim, A.F.; Clomburg, L.A. Experimental and numerical investigation of confined laminar

diffusion flames. Combust. Flame 1980, Volume 37, pp. 227-244.

Mitchell, R.E. Nitrogen Oxide Formation in Laminar Methane-air Diffusion Flames. Doutorado, Massachusetts

Institute of Technology, MA, EUA, 1975.

Santoro, R.J.; Semerjian, H.G.; Dobbins, R.A. Soot Particle Measurements in Diffusion Flames. Combust. Flame

, Volume 51, pp. 203-218.

Smooke, M.D.; Mcenally, C.S.; Pfefferle, L.D. Computational and Experimental Study of Soot Formation in Coflow,

Laminar Diffusion Flame. Combust. Flame 1999, Volume 117, pp. 117-139.

McEnally, C.S.; Pfefferle, L.D. Experimental Study of Nonfuel Hydrocarbon Concentrations in Coflowing Partially

Premixed Methane/Air Flames. Combust. Flame 1999, Volume 118, pp. 619-632.

Bennett, B.A.V.; Mcenally, C.S.; Pfefferle, L.D.; Smooke, M.D. Computational and Experimental Study of

Axisymmetric Coflow Partially Premixed Methane/Air Flames. Combust. Flames 2000, Volume 123, pp. 522-546.

Thomson, K.A.; Gulder, O.L.; Weckman, E.J.; Fraser, R.A.; Smallwood, G.J.; Snelling, D.R. Soot concentration and

temperature measurements in co-annular, nompremixed CH4/air laminar flames at pressures up to 4 MPa.

Combust. Flame 2005, Volume 140, pp. 222-232.

Dasgupta, A. Numerical Simulation of Axisymmetric Laminar Diffusion Flames with Soot. Dissertation in

Mechanical Engineering, Pennsylvania State University, PA, USA, 2015.

Bhowal, A.J.; Mandal, B.K. A Computational Study of Soot Formation in Methane Air Co-Flow Diffusion Flame

Under Microgravity Conditions. Microgravity Science and Technology 2016, Volume 28, pp.395-412.

Azarkhavarani, M.F.; Lessani, B.; Tabejamaat, S. Artificial compressibility method on half-staggered grid for

laminar radiative diffusion flames in axisymmetric coordinates. Numerical Heat Transfer, Part B: Fundamentals

, Volume 72, pp. 392-407.

Soloklou, M.N.; Golneshan, A.A. Numerical investigation on effects of fuel tube diameter and co-flow velocity in a

methane/air non-premixed flame. Heat and Mass Transfer 2019.

Dasgupta, A.; Juez, E.G.; Haworth, D.C. Flame simulations with an open-source code. Computer Physics

Communications 2019, Volume 237, pp. 219-229.

Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B; Goldenberg, M.; Bowman, C.T.; Hanson,

R.K.; Song, S.; Gardiner Jr., W.C.; Lissianski, V.V.; Qin, Z. GRI-Mech 3.0 ”“ An Optimized Detailed Chemical Reaction

Mechanism for Methane Combustion. Disponível online: http://www.me.berkeley.edu/gri_mech/ (visitado em

/05/2019).

Turns, S.R. An introduction to combustion: Concepts and Applications, 3rd ed.; McGraw-Hill Education: NY, EUA,

Barlow, R.S.; Karpetis, A.N.; Frank, J.H.; Chen, J.Y. Scalar profiles and NO formation in laminar opposed-flow

partially premixed methane/air flames. Combust. Flame 2001, Volume 127, pp. 2102-2118.

McBride, B.J.; Gordon, S.; Reno, M.A. Coefficients for calculating thermodynamic and transport properties of

individual species. NASA Technical Memorandum 4513 1993.

Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons: NJ, EUA, 2001.

Cunha, Fábio Alfaia. 2010. Tese (Doutorado em Ciências Mecânicas) ”“ Faculdade de Tecnologia, Pós-Graduação

em Ciências Mecânicas, Universidade de Brasília.

Masson, C.; Saabas, H.J.; Baliga, B.R. Co-located Equal-Order Control-Volume Finite Element Method for

Two-Dimensional Axisymmetric Incompressible Fluid Flow. Int. J. Numer. Methods in Fluids 1994, Volume 18, pp.

-26.

Saabas, H.J.; Baliga, B.R. Co-Located Equal-Order Control-Volume Finite-Element Method for Multidimensional,

Incompressible, Fluid Flow ”“ Part I: Formulation. Numerical Heat Transfer Part B 1994, Volume 26, pp. 381-407.

Liu, F.; Guo, H.; Smallwood, G.J. Effects of radiation model on the modeling of a laminar coflow methane/air

diffusion flame, Combustion and Flame 2004, Volume 138, Issues 1”“2, pp. 136-154.

Datta, A.; Saha, A. Contributions of self-absorption and soot on radiation heat transfer in a laminar methane””air

diffusion flame. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy

, Volume 221, pp. 955”“970.

Uygur, A.B.; Selçuk, N.; Tuncer, I.H. A non-iterative pressure based scheme for the computation of reacting

radiating flows. International Journal of Thermal Sciences 2008, Volume 47, pp. 209-220.

Published

2020-12-31

How to Cite

Alfaia da Cunha, F., & Pedro. (2020). CFD modeling of the combustion with detailed chemical kinetics mechanism for incompressible laminar flow. Revista Interdisciplinar De Pesquisa Em Engenharia, 6(2), 81–91. Retrieved from https://periodicos.unb.br/index.php/ripe/article/view/29958