Análise Numérica e Experimental da Influência de Dispositivos de Ponta de Asa no Perfil Aerodinâmico NACA 23015

Authors

  • Diogenes Dal Magro Universidade Regional Integrada do Alto Uruguai e das Missões
  • Roberta Neumeister Universidade Regional Integrada do Alto Uruguai e das Missões - Campus de Erechim

DOI:

https://doi.org/10.26512/ripe.v5i2.29702

Keywords:

Winglets. Pressure distribution. Drag Coefficient. Lift Coefficient.

Abstract

Agricultural aviation has peculiar operating characteristic as the low flight altitudes and the need for precise maneuvers in a short time, these aircraft demand high aerodynamic efficiency. An alternative to improve the performance of these aircraft is the use of a wingtip device. The present work presents a numerical-experimental analysis about the influence of the use of wing tip devices in an aerodynamic profile NACA 23015. The analyzes were performed using two angles of attack. The first was 6 °, as the angle of installation of the wing in an aircraft is commonly and the second was 15 °, a value close to the stall angle. The experimental analyzes were performed in an open circuit aerodynamic channel. Numerical analyzes were performed using the Reynolds-Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model. The results obtained by the numerical and experimental methods showed similar values, with only differences in the region of minimum pressure being observed. With the addition of the wing tip device, it was possible to observe an increase of approximately 5.5% and 3.0% in aerodynamic efficiency with angles of attack of 6 and 15 degrees respectively, both in numerical analysis and in experimental tests. Therefore, it is possible to conclude that the device developed in this work can be used as an alternative to optimize the aerodynamic performance of aircraft.

Downloads

Download data is not yet available.

References

ANAC. Notícias. Conheça um pouco sobre a aviação agrícola. 2017. Disponível em: <http://www.anac.gov.br/noticias/2016/conheca-um-pouco-sobre-a-aviacao-agricola> Acesso em: 29 set. 2019.

Bravo-Mosquera, P. D., Cerón-Muñoz, H. D., Díaz-Vázquez, G. e Catalano, F. M. Conceptual design and CFD analysis of a new prototype of agricultural aircraft. Aerospace Science and Technology, v. 80, p. 156, 176 176, 2018.

CENIPA. Ocorrências Aeronáuticas: Panorama Estatístico da Aviação Brasileira. Brasília, 2016. <http://www2.fab.mil.br/cenipa/index.php/estatisticas/panorama>.

Narayan, G.; John, B. Effect of winglets induced tip vortex structure on the performance of subsonic wings. Aerospace Science and Technology, v. 58, p. 328-340, 2016.

Guerrero, J. E.; Maestro, D.; Bottaro, A. Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mecanique, v. 340, n. 1, p. 67, 2012.

White, F. M. Mecânica dos Fluidos, 4ª edição, 2002.

Fox, R. W.; Pritchard, P. J.; Mcdonald, A. T. Introdução à Mecânica dos Fluidos. 8ed. Rio de Janeiro, Brasil. LTC, 2014.

Júnior, M. M. A.; Reis, M. N. E.; Marinho, P. F.; Veloso, C. A. S. e Paula, T. H. B. Estudo Numérico de Perfil Aerodinâmico. Revista Interdisciplinar de Pesquisa em Engenharia-RIPE, v. 2, n. 20, p. 09-18, 2016.

Elham, A.; Van Tooren, M. J. L. Winglet multi-objective shape optimization. Aerospace Science and Technology, v. 37, p. 93-109, 2014.

Demasi, L., Monegato, G., Cavallaro, R., & Rybarczyk, R. (2019). Minimum Induced Drag Conditions for Winglets: the Best Winglet Design Concept. AIAA Scitech 2019 Forum.

Rodrigues, L. E. M. J. Fundamentos da Engenharia Aeronáutica. Cengage Learning, 2014.

Menter, F. R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, v. 4, n. 1, p. 625-632, 2003.

Published

2020-02-27

How to Cite

Magro, D. D., & Neumeister, R. (2020). Análise Numérica e Experimental da Influência de Dispositivos de Ponta de Asa no Perfil Aerodinâmico NACA 23015. Revista Interdisciplinar De Pesquisa Em Engenharia, 5(2), 90–99. https://doi.org/10.26512/ripe.v5i2.29702