Preparation, sinterization and characterization of solid electrolytes based on Ceria-Zirconia

Authors

DOI:

https://doi.org/10.26512/ripe.v5i2.24660

Keywords:

Solid electrolyte, Mixed oxide, Ceria, Zirconia, Pechini

Abstract

Featuring fluorite structure and easy doping with rare earths, responsible for maintaining the stability and formation of oxygen vacancies, cerium-based solid electrolytes are the main focus in research for intermediate temperature fuel cells (700 ° C). The research pursue the multiple doping of cerium oxide (Ce0,8Gd0,18Sm0,02O1,9)  with zirconia oxide (Zr0,9Y0,1O2) in concentration of 10,20, 30 and 40%. Preparation of the doped oxide was done using the chemical synthesis of the Pechini method. The refined powder obtained by the technique was milled in a high energy mill, shaped in a cold uniaxial pressing, and sintered in two different sintering curves: The first, with only one step at 1500°C, and the second in two stages, with plateau at 1650°C followed by cooling and plateau of 1500°C. The physical and chemical properties of the samples were evaluated through TGA, XRD, density and surface evaluation through SEM. The evaluation of the resistive characteristics of the samples was evaluated through the Impedance Spectroscopy, evaluated in the range of 310°C to 385°C. The result provided the evaluation of the conductivity and activation energy of the samples through the Arrhenius graph. It was observed that the samples with higher percentage of cerium oxide, as well as sintered samples in the sintering ramp in 2 stages, showed lower activation energy and higher conductivity.

Downloads

Download data is not yet available.

References

AHN, K. et al. Enhanced Thermal Stability of SOFC Anodes Made with CeO2-ZrO2 Solutions; Department of Chemical and Biomolecular Engineering, The University of Pennsylvania; USA; 2005.

SAMMES, N; DU, Y; Intermediate-Temperature SOFC Electrolytes, Connecticut Global Fuel Cell Center, University of Connecticut, USA; 2005

LARMINIE, James; Fuel cell system explained/James Larminie, Andrew Dicks. ”“ 2nd ed. P. cm. Wiley Editorial; England; 2003.

MORI, T.; et al. Design of nanostructured ceria-based solid electrolytes for development of IT-SOFC; ICMAT; 2007.

STEELE, Brian CH; HEINZEL, Angelika. Materials for fuel-cell technologies. Nature, v. 414, n. 6861, p. 345-352, 2001.

CAJAS DAZA, Paola Cristina. Síntese e análise microestrutural de eletrólitos sólidos baseados em céria com composição Ce0,8Gd0,2-xSmxO1,9 (x=0,00; 0,01; 0,03 e 0,05) para aplicações em células a combustível. 2017. xxi, 119 f., il. Tese (Doutorado em Ciências Mecânicas)””Universidade de Brasília, Brasília, 2017.

FUENTES, Rodolfo O.; BAKER, Richard T. Synthesis of nanocrystalline CeO2− ZrO2 solid solutions by a citrate complexation route: a thermochemical and structural study. The Journal of Physical Chemistry C, v. 113, n. 3, p. 914-924, 2008.

PECHINI, M; Method of preparing lead and alkaline earth titanates and niobates and coating method using the same form a capacitor.; USA Pat # 3330697; 1967.

LESSING, P.A.; Mixed-cation oxide poder via polymeric Precursors. Ceramic Bulletin 68,1999.

KUMAR, Suresh; MESSING, Gary L. Synthesis of barium titanate by a basic pH Pechini process. In: MRS Proceedings. Cambridge University Press, 1992.

SURYANARAYANA, C.; Mechanical alloying and milling; Department of Metallurgical and Materials Engineering, Colorado School of Mines, USA, 2001.

ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013

MAZALI, Italo Odone. Determinação da densidade de sólidos pelo método de Arquimedes. Laboratório de Química do Estado Sólido (LQES)-Instituto de Química da Unicamp, 2010.

RODRIGUES, Carolina Hathenher; DE LOS SANTOS GUERRA, José. Implementação da técnica de Espectroscopia de Impedâncias para estudo de propriedades físicas em Materiais Ferroelétricos. Horizonte Científico, v. 9, n. 2, 2015.

BARSOUKOV, Evgenij; MACDONALD, J. Ross (Ed.). Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2005.

IRVINE, John TS; SINCLAIR, Derek C.; WEST, Anthony R. Electroceramics: characterization by impedance spectroscopy. Advanced Materials, v. 2, n. 3, p. 132-138, 1990.

CHINAGLIA, D. L. et al. Espectroscopia de impedância no laboratório de ensino. Revista Brasileira de Ensino de Física, v. 30, n. 4, p. 4504-1, 2008.

NOBRE, Marcos A. de Lima; LANFREDI, Silvania. Electrical characterization by impedance spectroscopy of Zn7Sb2O12 ceramic. Mat. Res., São Carlos , v. 6, n. 2, p. 151-156, June 2003. Disponível em:<https://goo.gl/4DTSMy>. Acesso em: 15 Nov.2016 2016.

SUBBARAO, E. (Ed.). Solid electrolytes and their applications. Springer Science & Business Media, 2012.

WANG, Ruigang; Morphology-Controllable Synthesis and Characterization of Low-Temperature Active Rare-Earth Oxide Nanocatalysts, 59th Annual Report on Research 2014, Youngstown State University, 2014.

STOJMENOVIC, M. Z unic J. Gulicovski, D. Bajuk-Bogdanovic, I. Holclajtner-Antunovic,V. Dodevski, S. Mentus Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells, J Mater Sci (2015) 50:3781”“3794

Published

2020-02-17

How to Cite

Queiroz, C. G. R., Silva, C. R. M., & Munõz, R. A. (2020). Preparation, sinterization and characterization of solid electrolytes based on Ceria-Zirconia. Revista Interdisciplinar De Pesquisa Em Engenharia, 5(2), 50–62. https://doi.org/10.26512/ripe.v5i2.24660