A NOVEL COUPLING TECHNIQUE FOR NON-MATCHING FINITE ELEMENT MESHES: APPLICATION TO CONTACT PROBLEMS

Authors

  • Marco Tosati State University of Sao Paulo
  • Osvaldo Luís Manzoli
  • Eduardo Alexandre Rodrigues

DOI:

https://doi.org/10.26512/ripe.v2i34.21808

Keywords:

Coupling finite element. Non-matching meshes. Contact problem. Loss of adherence. Overlap of meshes.

Abstract

This paper presents the simulation of contact problems using a novel technique for coupling non-matching finite elements meshes based on the use of special finite elements recently developed, termed coupling finite elements (CFEs). This technique is able to establish the interaction between two non-matching meshes, representing two different subdomains of a problem, which share a common boundary. In additional, this technique has demonstrated to be highly versatile, since no additional degree of freedom is introduced to the problem and a non-rigid coupling scheme can be considered to describe the nonlinear behavior among the subdomains. In this paper the technique is applied to simulate the interaction between some parts of components meshed independently, demonstrating its capability to represent basic contact problems, such as loss of adherence. The results demonstrated that the strategy applied is able to represent the interaction between the parts of mechanical components, coherently and accurately.

Downloads

Download data is not yet available.

References

A. Pantano, R.C. Averill, A penalty-based finite element interface technology, Comput. Struct. 80 (22) (2002) 1725”“1748. http://dx.doi.org/10.1016/S0045-7949(02)00056-1.

A. Pantano, R.C. Averill, A penalty-based interface technology for coupling independently modeled 3D finite element meshes, Finite Elem. Anal. Des. 43 (4) (2007) 271”“286. http://dx.doi.org/10.1016/j.finel.2006.10.001.

A. Sellittoa, R. Borrelli, F. Caputo, A. Riccio, F. Scaramuzzino, Methodological approaches for kinematic coupling of non-matching finite element meshes, Procedia Eng. 10 (0) (2011) 421”“426. http://dx.doi.org/10.1016/j.proeng.2011.04.071. Published by Elsevier Ltd. Selection and peer-review under responsibility of 11th International Conference on the Mechanical Behavior of Materials (ICM11).

B. Lamichhane, B. Wohlmuth, Mortar finite elements for interface problems, Computing 72 (3”“4) (2004) 333”“348. http://dx.doi.org/10.1007/s00607-003-0062-y.

B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal. 38 (3) (2001) 989”“1012. URL: http://www.jstor.org/stable/3061996.

D. Arnold, F. Brezzi, B. Cockburn, L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (5) (2002) 1749”“1779. http://dx.doi.org/10.1137/S0036142901384162.

D. Dureisseix, H. Bavestrello, Information transfer between incompatible finite element meshes: application to coupled thermo-viscoelasticity, Comput. Methods Appl. Mech. Engrg. 195 (44”“47) (2006) 6523”“6541. http://dx.doi.org/10.1016/j.cma.2006.02.003.

G. Haikal, K. Hjelmstad, An enriched discontinuous Galerkin formulation for the coupling of non-conforming meshes, Finite Elem. Anal. Des. 46 (6) (2010) 496”“503.

H. Dhia, Problèmes méaniques multi-échelles: la methode Arlequin, C. R. Acad. Sci. - Ser. IIB - Mech.-Phys.-Astron. 326 (12) (1998) 899”“904. http://dx.doi.org/10.1016/S1251-8069(99)80046-5.

H. Dhia, G. Rateau, The Arlequin method as a flexible engineering design tool, Internat. J. Numer. Methods Engrg. 62 (11) (2005) 1442”“1462. http://dx.doi.org/10.1002/nme.1229.

H. Peters, S. Marburg, N. Kessissoglou, Structural-acoustic coupling on non-conforming meshes with quadratic shape functions, Internat. J. Numer. Methods Engrg. 91 (1) (2012) 27”“38. http://dx.doi.org/10.1002/nme.4251.

J.F. Unger, S. Eckardt, Multiscale modeling of concrete. From mesoscale to macroscale, Arch. Comput. Methods Eng. 18 (3) (2011) 341”“393. http://dx.doi.org/10.1007/s11831-011-9063-8.

J. Nitsche, Uber ein variationsprinzip zur losung von dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1) (1971) 9”“15. http://dx.doi.org/10.1007/BF02995904.

L.A.G. Bitencourt Jr., O.L. Manzoli, P.G.C. Prazeres, E.A. Rodrigues, T.N. Bittencourt, A coulpling technique for non-matching finite element meshes, Comput. Methods Appl. Mech. Engrg. (2015), http://dx.doi.org/10.1016/j.cma.2015.02.025.

O. Lloberas-Valls, D. Rixen, A. Simone, L. Sluys, On micro-to-macro connections in domain decomposition multiscale methods, Comput. Methods Appl. Mech. Engrg. 225”“228 (0) (2012) 177”“196. http://dx.doi.org/10.1016/j.cma.2012.03.022.

P.G.C. Prazeres, L.A.G. Bitencourt Jr., T.N. Bittencourt, O.L. Manzoli, A modified implicit”“explicit integration scheme: an application to elastoplasticity problems. J Braz Soc Mech Sci Engng 2016;38(1):151”“61. http://dx.doi.org/10.1007/s40430-015-0343-3.

S. Hueber, B. Wohlmuth, Thermo-mechanical contact problems on non-matching meshes, Comput. Methods Appl. Mech. Engrg. 198 (15”“16) (2009) 1338”“1350. http://dx.doi.org/10.1016/j.cma.2008.11.022.

S. Thirunavukkarasu, M.N. Guddati, A domain decomposition method for concurrent coupling of multiscale models, Internat. J. Numer. Methods Engrg. 92 (11) (2012) 918”“939. http://dx.doi.org/10.1002/nme.4362.

Y. Bazilevs, M.-C. Hsu, M. Scott, Isogeometric fluid”“structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg. 249”“252 (0) (2012) 28”“41.

Published

2017-08-07

How to Cite

Tosati, M., Manzoli, O. L., & Rodrigues, E. A. (2017). A NOVEL COUPLING TECHNIQUE FOR NON-MATCHING FINITE ELEMENT MESHES: APPLICATION TO CONTACT PROBLEMS. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(34), 56–70. https://doi.org/10.26512/ripe.v2i34.21808