A NUMERICAL ANALYSIS OF THE ELECTRICAL OUTPUT RESPONSE OF A NONLINEAR PIEZOELECTRIC OSCILLATOR SUBJECTED TO A HARMONIC AND RANDOM EXCITATION

Authors

  • Tiago Leite Pereira Universidade de Brasília, Department of Mechanical Engineering
  • Aline Souza de Paula Universidade de Brasília, Department of Mechanical Engineering
  • Adriano Todorovic Fabro Universidade de Brasilia
  • Marcelo Amorim Savi Universidade Federal do Rio de Janeiro, COPPE , Department of Mechanical Engineering

DOI:

https://doi.org/10.26512/ripe.v2i29.21789

Keywords:

Piezoelectric. Nonlinear system. Energy harvesting. Random excitation.

Abstract

The renewable energy is in the focus of many researches in the last decades, and the use of piezoelectric material can be used to obtain one source of this renewable energy. In this case, energy harvesting explores mainly the source of ambient motion and the piezoelectric material convert mechanical energy, present in the ambient motion, into electrical energy. In the work, we present a nonlinear bistable piezomagnetoelastic structure subjected to harmonic and random base excitation. At first, harmonic excitation is of concern and then, the system subjected to random excitation is analyzed. The goal of the numerical analysis is to present an investigation of the best electrical output response of the system given harmonic and random excitations.

Downloads

Download data is not yet available.

References

Anton, S.R., and Sodano, H.A. (2007). A review of power harvesting using piezoelectric materials (2003?2006). Smart Mater. Struct. 16, R1.

De Paula, A.S., Inman, D.J., and Savi, M.A. (2015). Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation. Mech. Syst. Signal Process. 54, 405”“416.

Erturk, A., and Inman, D.J. (2008). A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. J. Vib. Acoust. 130, 041002”“041002.

Erturk, A., Hoffmann, J., and Inman, D.J. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102.

Kumar, P., Narayanan, S., Adhikari, S., and Friswell, M.I. (2014). Fokker”“Planck equation analysis of randomly excited nonlinear energy harvester. J. Sound Vib. 333, 2040”“2053.

Lefeuvre, E., Badel, A., Richard, C., and Guyomar, D. (2007). Energy harvesting using piezoelectric materials: Case of random vibrations. J. Electroceramics 19, 349”“355.

Moon, F.C., and Holmes, P.J. (1979). A magnetoelastic strange attractor. J. Sound Vib. 65, 275”“296.

Newland, D.E. (2005). An Introduction to Random Vibrations, Spectral & Wavelet Analysis: Third Edition (Mineola, N.Y: Dover Publications).

Ramlan, R., Brennan, M.J., Mace, B.R., and Kovacic, I. (2009). Potential benefits of a nonlinear stiffness in an

energy harvesting device. Nonlinear Dyn. 59, 545”“558.

Shahruz, S.M. (2007). Increasing the Efficiency of Energy Scavengers. ArXiv07084412 Nlin.

Tang, L., Yang, Y., and Soh, C.K. (2010). Toward Broadband Vibration-based Energy Harvesting. J. Intell. Mater. Syst. Struct. 21, 1867”“1897.

Published

2017-02-10

How to Cite

Pereira, T. L., Paula, A. S. de, Fabro, A. T., & Savi, M. A. (2017). A NUMERICAL ANALYSIS OF THE ELECTRICAL OUTPUT RESPONSE OF A NONLINEAR PIEZOELECTRIC OSCILLATOR SUBJECTED TO A HARMONIC AND RANDOM EXCITATION. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(29), 44–53. https://doi.org/10.26512/ripe.v2i29.21789

Most read articles by the same author(s)